
V2Ray Test Targets:
V2Ray Go Clients
V2Ray Go Servers
V2Ray Runtime
V2Ray Supply Chain

Pentest Report
Client:
V2Ray Team

7ASecurity Test Team:
● Abraham Aranguren, MSc.
● Daniel Ortiz, MSc.
● Miroslav Štampar, PhD.
● Stefan Nicula, PhD.

7ASecurity
Protect Your Site & Apps

From Attackers
sales@7asecurity.com

7asecurity.com

https://7asecurity.com/


Pentest Report

INDEX
Introduction 3
Scope 4
Identified Vulnerabilities 5

V2R-01-006 WP1: Possible Fingerprint via Insecure Defaults (Medium) 5
V2R-01-007 WP1/2: Possible V2Ray DoS via JA3 Fingerprints (Medium) 7
V2R-01-008 WP1: Identification of V2Ray Servers via Keep-Alive (Medium) 9

Hardening Recommendations 11
V2R-01-001 WP1: Possible DYLIB Injection on MacOS Client (Medium) 11
V2R-01-002 WP1: Potential MitM Attacks via TLS MinVersion (Low) 13
V2R-01-003 WP1: Usage of Insecure PRNG (Low) 14
V2R-01-004 WP1: Incorrect Default File Permissions (Low) 15
V2R-01-005 WP1: Multiple Vulnerable Dependencies (Low) 16
V2R-01-009 WP1: Possible DoS Attacks on HTTP Services (Medium) 17
V2R-01-010 WP1: General Binary Hardening Recommendations (Info) 19

WP3: V2Ray Supply Chain Implementation 20
Introduction and General Analysis 20
SLSA v1.0 Analysis and Recommendations 21
SLSA v0.1 Analysis and Recommendations 23

Conclusion 27

7ASecurity © 2024
2

https://7asecurity.com


Pentest Report

Introduction
“A platform for building proxies to bypass network restrictions.”

From https://github.com/v2fly/v2ray-core

This document outlines the results of a penetration test and whitebox security review
conducted against V2Ray. The project was funded by the Open Technology Fund (OTF),
and executed by 7ASecurity in March 2024. The audit team dedicated 32 working days
to complete this assignment. Please note that this is the first penetration test for this
project. Consequently, the identification of security weaknesses was initially expected to
be easier during this assignment, as more vulnerabilities are typically identified and
resolved after each testing cycle.

Please note that given the large size of the codebase, this audit focused on the most
important components and most commonly used features of the V2Ray community.

During this iteration the goal was to review the V2Ray project as thoroughly as possible,
to ensure users can be provided with the best possible security and privacy.

The methodology implemented was whitebox: 7ASecurity was provided with access to a
reference server, documentation and source code. A team of 4 senior auditors carried
out all tasks required for this engagement, including preparation, delivery, documentation
of findings and communication.

A number of necessary arrangements were in place by February 2024, to facilitate a
straightforward commencement for 7ASecurity. In order to enable effective collaboration,
information to coordinate the test was relayed through email, as well as a shared
Telegram channel. The V2Ray team was helpful and responsive at all times, which
facilitated the test for 7ASecurity, without introducing any unnecessary delays.
7ASecurity provided regular updates regarding the audit status and its interim findings
during the engagement.

This audit split the scope items in the following work packages, which are referenced in
the ticket headlines as applicable:

● WP1: Whitebox Tests against V2Ray, Servers and Clients, written in Go
● WP2: Whitebox Tests against V2Ray Server Runtime Analysis via SSH
● WP3: Whitebox Tests against V2Ray Supply Chain Implementation

The findings of the security audit (WP1-2) can be summarized as follows:

Identified Vulnerabilities Hardening Recommendations Total Issues

3 7 10

7ASecurity © 2024
3

https://github.com/v2fly/v2ray-core
https://7asecurity.com


Pentest Report

Please note that the analysis of the remaining work package (WP3) is provided
separately, in the following section of this report:

● WP3: V2Ray Supply Chain Implementation

Moving forward, the scope section elaborates on the items under review, while the
findings section documents the identified vulnerabilities followed by hardening
recommendations with lower exploitation potential. Each finding includes a technical
description, a proof-of-concept (PoC) and/or steps to reproduce if required. Additionally,
it provides mitigation or fix advice for follow-up actions by the development team.

Finally, the report culminates with a conclusion providing detailed commentary, analysis,
and guidance. This includes insights related to the context, preparation, and general
impressions gained throughout this test. Additionally, it offers a summary of the
perceived security posture of the V2Ray project.

Scope

The following list outlines the items in scope for this project:
● WP1: Whitebox Tests against V2Ray, Servers and Clients, written in Go

○ Audited Source Code: https://github.com/v2fly/v2ray-core
● WP2: Whitebox Tests against V2Ray Server Runtime Analysis via SSH

○ As above
● WP3: Whitebox Tests against V2Ray Supply Chain Implementation

○ As above

7ASecurity © 2024
4

https://github.com/v2fly/v2ray-core
https://7asecurity.com


Pentest Report

Identified Vulnerabilities

This area of the report enumerates findings that were deemed to exhibit greater risk
potential. Please note these are offered sequentially as they were uncovered, they are
not sorted by significance or impact. Each finding has a unique ID (i.e. V2R-01-001) for
ease of reference and offers an estimated severity in brackets alongside the title.

V2R-01-006 WP1: Possible Fingerprint via Insecure Defaults (Medium)

Retest Notes: This issue is non-trivial to fix as it depends on the golang implementation.
The V2Ray team will mitigate this weakness by educating users via documentation.

The handlePlainHTTP V2Ray method sets the User-Agent header to an empty string if
the client does not provide one. While possibly intentional to prevent setting default
User-Agent headers, this increases the odds for fingerprinting attacks by making it
distinct from other HTTP clients. Confirmation was as follows:

PoC Code (file poc-request.py):
#!/usr/bin/python3

import requests

# Define the proxy address

proxy_address = 'http://192.168.0.25:1080' # Change this to your proxy address

# Define the target URL

url = 'http://7as.es/s/v2ray-dani'

# Set up the proxy

proxies = {

'http': proxy_address,

'https': proxy_address

}

headers = {"User-Agent": "" }

# Send HTTP GET request through proxy

try:

response = requests.get(url, proxies=proxies, headers=headers)

print("Response from server:")

print(response.text)

except requests.exceptions.RequestException as e:

print("Error:", e)

Command:
python poc-request.py

7ASecurity © 2024
5

https://7asecurity.com


Pentest Report

Please note that the request received does not contain the User-Agent header.

Output (Headers without User-Agent):
Headers:

_______________________________________________

[Host] => 7as.es

[Accept] => */*

[Accept-Encoding] => gzip, deflate

[Connection] => close

The root cause of this issue appears to be in the following code path:

Affected File:
https://github.com/v2fly/v2ray-core/blob/.../proxy/http/server.go#L216

Affected Code:
func (s *Server) handlePlainHTTP(ctx context.Context, request *http.Request, writer

io.Writer, dest net.Destination, dispatcher routing.Dispatcher) error {

[...]

// Prevent UA from being set to golang's default ones

if request.Header.Get("User-Agent") == "" {

request.Header.Set("User-Agent", "")

}

It is recommended to implement a default User-Agent behavior that is more difficult to
fingerprint. For example:

● Set a default User-Agent header: Instead of setting the User-Agent header to an
empty string, a more generic but non-identifiable User-Agent header could be
provided. This ensures that the server is not easily distinguishable from other
HTTP clients, reducing the risk of fingerprinting attacks.

● Randomize the User-Agent header: The User-Agent header may be randomized
for each request. This increases the difficulty to profile or identify the server,
based on the User-Agent header alone.

● Allow configuration options: Users could have options to configure custom
User-Agent headers as needed. For example, users could set a specific or a
random-per-request User-Agent parameter. Other possible enhancements in this
area could be user-defined lists of user agents to rotate.

7ASecurity © 2024
6

https://github.com/v2fly/v2ray-core/blob/8de2f27043b00612986d96f37975cd4aa98b49c3/proxy/http/server.go#L216
https://7asecurity.com


Pentest Report

V2R-01-007 WP1/2: Possible V2Ray DoS via JA3 Fingerprints (Medium)

JA3 is a fingerprinting technique to identify and classify SSL/TLS clients based on the
peculiarities of their TLS handshake messages1. This process generates a distinctive
fingerprint for each software or device based on its handshake parameters,
cryptographic algorithms, and supported extensions, differentiating TLS clients like web
browsers and VPNs. Censorship authorities utilize JA3 signatures2 to detect and block
internet users, particularly targeting VPN traffic, which is used to bypass censorship via
encrypted internet traffic. By monitoring TLS handshakes for known VPN JA3 fingerprints
and maintaining a database of these signatures, authorities may selectively block VPN
connections (i.e. V2Ray), effectively thwarting attempts to evade censorship. This
strategy allows for targeted censorship of VPNs without impacting all TLS traffic.

OSINT research showed that the 3fe[...]c24 JA3 hash, linked to older V2Ray versions,
matches previously documented software3, indicating that this hash alone cannot
definitively identify V2Ray due to possible matches with other network applications
compiled with a similar Go compiler version. However, when combined with specific
characteristics (V2R-01-006, V2R-01-008), it allows for the identification of a networked
V2Ray client. Additionally, using known V2Ray JA3 fingerprints can block V2Ray usage
effectively with minimal impact on legitimate traffic.

PoC:
During the proof of concept creation, various Linux 64-bit versions from v5.8.04 to
v5.15.15 were tested against public V2Ray servers6, all generating the identical JA3
fingerprint 7a15285d4efc355608b304698cd7f9ab. Earlier versions from v5.0.7 to v5.2.1
produced a different fingerprint, 3fed133de60c35724739b913924b6c24. The tests
utilized the Python tool pyja37 and Wireshark8, both confirming these fingerprints across
all tests, including attempts with a single proxy request over V2Ray sessions. Despite
testing different versions and platforms, JA3 fingerprints remained consistent across
connection attempts and minor releases, indicating that V2Ray TLS communication can
be easily identified using JA3 fingerprinting. This facilitates the straightforward creation
of a censor database using the fingerprints of public releases.

Command:
ja3 capture.pcap

8 https://www.wireshark.org/
7 https://pypi.org/project/pyja3/
6 https://sshocean.com/v2ray/vmess
5 https://github.com/v2fly/v2ray-core/releases/tag/v5.15.1
4 https://github.com/v2fly/v2ray-core/releases/tag/v5.8.0
3 https://ghost.security/resources/blog/attackers-guide-to-evading-honeypots-part1
2 https://github.com/net4people/bbs/issues/153
1 https://github.com/salesforce/ja3

7ASecurity © 2024
7

https://www.wireshark.org/
https://pypi.org/project/pyja3/
https://sshocean.com/v2ray/vmess
https://github.com/v2fly/v2ray-core/releases/tag/v5.15.1
https://github.com/v2fly/v2ray-core/releases/tag/v5.8.0
https://ghost.security/resources/blog/attackers-guide-to-evading-honeypots-part1
https://github.com/net4people/bbs/issues/153
https://github.com/salesforce/ja3
https://7asecurity.com


Pentest Report

Output:
[

{

"destination_ip": "5.181.21.202",

"destination_port": 443,

"ja3":

"771,49195-49199-49196-49200-52393-52392-49161-49171-49162-49172-156-157-47-53-49170-10

-4865-4866-4867,0-5-10-11-13-65281-23-16-18-43-51,29-23-24-25,0",

"ja3_digest": "7a15285d4efc355608b304698cd7f9ab",

"source_ip": "192.168.0.107",

"source_port": 57696,

"timestamp": 1711013679.505045

}

]

The root cause for this issue is that V2Ray uses the Go crypto/tls package for TLS
without modifications9, suggesting its TLS communications resemble typical Go clients
based on the Go compiler version.

It is recommended to implement JA3 fingerprint randomization, to evade censorship
targeting specific TLS fingerprints. This involves changing the JA3 signature of VPN
clients or TLS applications periodically. Such strategy, including TLS ClientHello
Extension Permutation -where extension order varies except for pre_shared_key-
increases VPN resilience against censorship by masking VPN traffic as various TLS
clients, complicating censor detection and database creation. Implemented in Google
Chrome since early 202310, this aids in evading censorship and accessing the
unrestricted internet, challenging authorities to maintain an up-to-date fingerprint
database.

The proposed solution, which is already implemented11, employs the uTLS package12,
derived from crypto/tls, which resists ClientHello fingerprinting, allows low-level access to
the handshake process, enables the generation of fake session tickets, and provides
additional functionalities. This approach can produce a unique JA3 fingerprint for each
execution13.

13 https://segmentfault.com/a/1190000041699815/en
12 https://github.com/refraction-networking/utls
11 https://www.v2fly.org/en_US/v5/config/stream.html#utls
10 https://www.fastly.com/blog/a-first-look-at-chromes-tls-clienthello-permutation-in-the-wild
9 https://github.com/v2fly/v2ray-core/blob/…/transport/internet/tls/tls.go#L1-L78

7ASecurity © 2024
8

https://segmentfault.com/a/1190000041699815/en
https://github.com/refraction-networking/utls
https://www.v2fly.org/en_US/v5/config/stream.html#utls
https://www.fastly.com/blog/a-first-look-at-chromes-tls-clienthello-permutation-in-the-wild
https://github.com/v2fly/v2ray-core/blob/c7459b30e454ecda4c392429c7409ea19a2384cf/transport/internet/tls/tls.go#L1-L78
https://7asecurity.com


Pentest Report

V2R-01-008 WP1: Identification of V2Ray Servers via Keep-Alive (Medium)

It was found that V2Ray servers violate RFC261614, failing to remove Keep-Alive
headers. Due to this behavior, headers like Hop-By-Hop and Keep-Alive, may make the
proxy server leak information, facilitating fingerprinting. This issue may be confirmed as
follows:

PoC Code (poc.go):
package main

import (

"fmt"

"net/http"

"net/url"

"os"

)

func main() {

proxyAddress := "http://192.168.0.25:1080" # Change to your v2ray proxy

target := "http://7as.es/s/v2ray-dani-keep-alive"

proxyURL, err := url.Parse(proxyAddress)

if err != nil {

fmt.Println("Error parsing proxy URL:", err)

os.Exit(1)

}

client := &http.Client{

Transport: &http.Transport{

Proxy: http.ProxyURL(proxyURL),

},

}

req, err := http.NewRequest("GET", target, nil)

if err != nil {

fmt.Println("Error creating HTTP request:", err)

os.Exit(1)

}

req.Header.Add("Keep-Alive", "Hi, I am a Hop-By-Hop header")

resp, err := client.Do(req)

if err != nil {

fmt.Println("Error sending HTTP request:", err)

os.Exit(1)

}

14 https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.5.1

7ASecurity © 2024
9

http://192.168.0.25:1080
https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.5.1
https://7asecurity.com


Pentest Report

defer resp.Body.Close()

fmt.Println("Response from server:")

fmt.Println(resp.Status)

}

Command:
go run request.go

Output (received on 7as.es host):
[Host] => 7as.es

[User-Agent] => Go-http-client/1.1

[Accept-Encoding] => gzip

[Connection] => close

[Keep-Alive] => Hi, I am a Hop-By-Hop header

The root cause of this issue appears to be in the following code path:

Affected File:
https://github.com/v2fly/v2ray-core/blob/.../common/protocol/http/headers.go

Affected Code:
func RemoveHopByHopHeaders(header http.Header) {

// Strip hop-by-hop header based on RFC:

// http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.5.1

// https://www.mnot.net/blog/2011/07/11/what_proxies_must_do

header.Del("Proxy-Connection")

header.Del("Proxy-Authenticate")

header.Del("Proxy-Authorization")

header.Del("TE")

header.Del("Trailers")

header.Del("Transfer-Encoding")

header.Del("Upgrade")

connections := header.Get("Connection")

header.Del("Connection")

if connections == "" {

return

}

for _, h := range strings.Split(connections, ",") {

header.Del(strings.TrimSpace(h))

}

}

It is recommended to implement RFC261615 correctly, hence removing Keep-Alive
headers.

15 https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.5.1

7ASecurity © 2024
10

https://github.com/v2fly/v2ray-core/blob/3ef7feaeaf737d05c5a624c580633b7ce0f0f1be/common/protocol/http/headers.go
https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.5.1
https://7asecurity.com


Pentest Report

Hardening Recommendations

This report area provides insight into less significant weaknesses that might assist
adversaries in certain situations. Issues listed in this section often require another
vulnerability to be exploited, need an uncommon level of access, exhibit minor risk
potential on their own, and/or fail to follow information security best practices.
Nevertheless, it is recommended to resolve as many of these items as possible to
improve the overall security posture and protect users in edge-case scenarios.

V2R-01-001 WP1: Possible DYLIB Injection on MacOS Client (Medium)

The MacOS V2Ray binary was found to be vulnerable to DYLIB Injection attacks16 due
to the absence of a __RESTRICT segment and a hardened runtime in the Mach-O file.
An attacker with the ability to set environment variables could exploit this vulnerability to
inject dynamic libraries into a legitimate V2Ray process. This injection could allow
arbitrary code execution within the process context, leading to potential unauthorized
access, data theft, or system compromise. Confirmation of this vulnerability requires
compiling a DYLIB library and utilizing the DYLD_INSERT_LIBRARIES environment
variable, as outlined in the following steps:

Step 1: Create a DYLIB Library to Inject
#include <stdio.h>

#include <syslog.h>

__attribute__((constructor))

static void myconstructor(int argc, const char **argv)

{

printf("[+] dylib constructor called from %s\n", argv[0]);

syslog(LOG_ERR, "[+] dylib constructor called from %s\n", argv[0]);

}

Step 2: Compile the dynamic library
$ gcc -dynamiclib libtest.c -o libtest.dylib

Step 3: Inject the DYLIB Library into the target application
$ DYLD_INSERT_LIBRARIES=libtest.dylib ./v2ray

Output:
[+] dylib constructor called from ./v2ray

A unified platform for anti-censorship.

Usage:

v2ray <command> [arguments]

16 https://attack.mitre.org/techniques/T1574/006/

7ASecurity © 2024
11

https://attack.mitre.org/techniques/T1574/006/
https://7asecurity.com


Pentest Report

This can be also confirmed by searching the desired string in the log stream.

Command
$ log stream --style syslog --predicate 'eventMessage CONTAINS[c] "constructor"'

Output:
Filtering the log data using "composedMessage CONTAINS[c] "constructor""

Timestamp (process)[PID]

2024-03-04 09:30:37.959581-0300 localhost v2ray[2573]: (libtest.dylib) [+] dylib

constructor called from ./v2ray

To mitigate DYLIB injection risks associated with the DYLD_INSERT_LIBRARIES
environment variable on MacOS, a restricted segment should be enabled to prevent
dynamic loading of dylib libraries for arbitrary code injection. It is recommended to use
the following compiler options to enable the restricted segment feature:

Proposed fix 1 (compiler options):
-Wl,-sectcreate,__RESTRICT,__restrict,/dev/null

Alternatively, a hardened runtime entitlement17 could be set on the Mach-O binary:

Proposed fix 2 (hardened runtime entitlement):
codesign -s CERT --option=runtime v2ray

Command (check for hardened options)
codesign -dv ./v2ray

Output:
Executable=/Users/dani/Downloads/v2ray-macos-arm64-v8a/v2ray

Identifier=v2ray

Format=Mach-O thin (arm64)

CodeDirectory v=20500 size=268422 flags=0x10000(runtime) hashes=8383+2

location=embedded

Signature size=1644

Signed Time=7 Mar 2024 at 09:07:43

Info.plist=not bound

TeamIdentifier=not set

Runtime Version=11.0.0

Sealed Resources=none

Internal requirements count=1 size=84

17 https://developer.apple.com/documentation/security/hardened_runtime

7ASecurity © 2024
12

https://developer.apple.com/documentation/security/hardened_runtime
https://7asecurity.com


Pentest Report

V2R-01-002 WP1: Potential MitM Attacks via TLS MinVersion (Low)

During the code review, it was discovered that the V2Ray codebase does not limit the
TLS version to those considered safe at the time of writing. According to RFC 899618,
TLS 1.0 and 1.1 have been officially deprecated since March 2021. Moreover, all major
browsers have ceased support for these TLS versions due to known vulnerabilities19.
The lack of a MinVersion setting in the TLS configurations is problematic, leading to
clients defaulting to a minimum of TLS 1.2, while servers default to TLS 1.0. This
discrepancy could allow a malicious attacker to conduct Man-In-The-Middle (MitM)
attacks on V2Ray users. The issue originates from the following files:

Affected Files:
https://github.com/v2fly/v2ray-core/blob/…/transport/internet/tls/config.go#L198-L227
https://github.com/v2fly/v2ray-core/blob/…/app/dns/nameserver_quic.go#L380-L391
https://github.com/v2fly/v2ray-core/blob/…/infra/conf/cfgcommon/tlscfg/tls.go#L28-L62
https://github.com/v2fly/v2ray-core/blob/…/transport/internet/quic/dialer.go#L195-L201
https://github.com/v2fly/v2ray-core/blob/…/transport/internet/quic/hub.go#L88-L93

Example Code:
func (c *Config) GetTLSConfig(opts ...Option) *tls.Config {

[...]

config := &tls.Config{

ClientSessionCache: globalSessionCache,

RootCAs: root,

InsecureSkipVerify: c.AllowInsecure,

NextProtos: c.NextProtocol,

SessionTicketsDisabled: !c.EnableSessionResumption,

VerifyPeerCertificate: c.verifyPeerCert,

ClientCAs: clientRoot,

}

Exceptions may occur when specific knowledge requires support for legacy clients,
necessitating the use of older TLS versions for compatibility. However, from 2024, it is
advised to set and enforce TLS1.320 as the minimum version, which is widely supported
and available for nearly six years21. This is achieved by configuring TLS instances with
the MinVersion setting to tls.VersionTLS13.

21 https://www.internetsociety.org/blog/2018/08/internet-security-gets-a-boost/
20 https://www.vertexcybersecurity.com.au/tls1-2-end-of-life/
19 https://www.zdnet.com/article/browsers-to-block-access-to-https-sites-using-tls-1-0-and-1-1-...
18 https://datatracker.ietf.org/doc/rfc8996/

7ASecurity © 2024
13

https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/transport/internet/tls/config.go#L198-L227
https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/app/dns/nameserver_quic.go#L380-L391
https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/infra/conf/cfgcommon/tlscfg/tls.go#L28-L62
https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/transport/internet/quic/dialer.go#L195-L201
https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/transport/internet/quic/hub.go#L88-L93
https://www.internetsociety.org/blog/2018/08/internet-security-gets-a-boost/
https://www.vertexcybersecurity.com.au/tls1-2-end-of-life/
https://www.zdnet.com/article/browsers-to-block-access-to-https-sites-using-tls-1-0-and-1-1-starting-this-month/
https://datatracker.ietf.org/doc/rfc8996/
https://7asecurity.com


Pentest Report

V2R-01-003 WP1: Usage of Insecure PRNG (Low)

V2Ray was found to use the weak random number generator from the math/rand
package instead of the more secure crypto/rand22 alternative, lacking
Cryptographically-Secure Pseudorandom Number Generator (CSPRNG)23 capabilities.
Usage of this suboptimal choice makes the security of the application more brittle and
should be avoided. The issue is evident in the following files:

Affected Files:
https://github.com/v2fly/v2ray-core/blob/…/proxy/shadowsocks2022/encoding.go#L65
https://github.com/v2fly/v2ray-core/blob/…/proxy/shadowsocks/protocol.go#L106
https://github.com/v2fly/v2ray-core/blob/…/proxy/shadowsocks/protocol.go#L173
https://github.com/v2fly/v2ray-core/blob/…/proxy/shadowsocks/protocol.go#L192

Example Code:
import (

[...]

"math/rand"

[...]

func (t *TCPRequest) EncodeTCPRequestHeader(effectivePsk []byte,

eih [][]byte, address DestinationAddress, destPort int, initialPayload []byte, out

*buf.Buffer,

)

[...]

paddingLength := TCPMinPaddingLength

if initialPayload == nil {

initialPayload = []byte{}

paddingLength += 1 + rand.Intn(TCPMaxPaddingLength) // TODO INSECURE RANDOM

USED

}

It is advised to substitute the math/rand package with crypto/rand, which generates
random bytes via a Cryptographically Secure Pseudo-Random Number Generator
(CSPRNG), offering enhanced randomness. Generally, deploying CSPRNGs is
recommended unless reproducibility is explicitly required. Utilizing deterministic
Pseudo-Random Number Generators (PRNGs) poses the risk of unintended issues,
highlighting the need for careful consideration.

23 https://en.wikipedia.org/wiki/Cryptographically-secure_pseudorandom_number_generator
22 https://pkg.go.dev/crypto/rand

7ASecurity © 2024
14

https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/proxy/shadowsocks2022/encoding.go#L65
https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/proxy/shadowsocks/protocol.go#L106
https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/proxy/shadowsocks/protocol.go#L173
https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/proxy/shadowsocks/protocol.go#L192
https://en.wikipedia.org/wiki/Cryptographically-secure_pseudorandom_number_generator
https://pkg.go.dev/crypto/rand
https://7asecurity.com


Pentest Report

V2R-01-004 WP1: Incorrect Default File Permissions (Low)

V2Ray was found to create files with permissions beyond "0o600", granting read and
write access outside the intended user/owner24. This exceeds recommended practices,
contravening the security principle of least privilege25, which dictates using files with the
minimum permissions necessary for operations. An attacker might exploit this to access
configuration files in specific scenarios like shared hosting. Enforcing strict file
permissions is crucial for protecting against vulnerabilities, including information
disclosure and unauthorized code execution.

Affected Files:
https://github.com/v2fly/v2ray-core/blob/…/crypto/internal/chacha_core_gen.go#L59
https://github.com/v2fly/v2ray-core/blob/…/common/errors/errorgen/main.go#L20
https://github.com/v2fly/v2ray-core/blob/…/common/platform/filesystem/file.go#L53
https://github.com/v2fly/v2ray-core/blob/…/infra/vprotogen/main.go#L283

Example Code:
func CopyFile(dst string, src string) error {

bytes, err := ReadFile(src)

if err != nil {

return err

}

f, err := os.OpenFile(dst, os.O_CREATE|os.O_WRONLY, 0o644)

if err != nil {

return err

}

defer f.Close()

_, err = f.Write(bytes)

return err

}

It is recommended to enforce access restrictions for files with confidential information to
the owning user or service, and to the designated group only if needed, thereby
eliminating global or external access. This measure aims to boost system resilience and
protect sensitive data during program execution.

25 https://en.wikipedia.org/wiki/Principle_of_least_privilege
24 https://security.openstack.org/guidelines/dg_apply-restrictive-file-permissions.html

7ASecurity © 2024
15

https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/common/crypto/internal/chacha_core_gen.go#L59
https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/common/errors/errorgen/main.go#L20
https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/common/platform/filesystem/file.go#L53
https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/infra/vprotogen/main.go#L283
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://security.openstack.org/guidelines/dg_apply-restrictive-file-permissions.html
https://7asecurity.com


Pentest Report

V2R-01-005 WP1: Multiple Vulnerable Dependencies (Low)

Retest Notes: V2Ray fixed this issue and 7ASecurity confirmed that the fix is valid.

The V2Ray project utilizes components with known vulnerabilities from underlying
dependencies. Although most vulnerabilities are likely not exploitable in the current
implementation, this practice could lead to security vulnerabilities. Below is a summary
table of the known vulnerabilities in packages used directly or as underlying
dependencies in V2Ray:

Component Issues Severity

go:github.com/cloudflar
e/circl:v1.3.3

CIRCL Kyber cryptographic library is
susceptible to a timing side-channel
vulnerability, identified as "kyberslash2"26.

High

go:golang.org/x/crypto:v
0.16.0

The SSH transport protocol with certain
OpenSSH extensions, found in OpenSSH
before 9.6 and other products, allows remote
attackers to bypass integrity27.

High

go:github.com/quic-go/q
uic-go:v0.40.0

quic-go28 is an implementation of the QUIC
protocol (RFC 9000, RFC 9001, RFC 9002) in
Go. An attacker can cause its peer to run out of
memory sending a large number of
"PATH_CHALLENGE" frames.

Medium

This issue was confirmed by reviewing the following file:

Affected File:
https://github.com/v2fly/v2ray-core/blob/…/go.sum

Affected Code:
require (

github.com/aead/cmac v0.0.0-20160719120800-7af84192f0b1 // indirect

github.com/ajg/form v1.5.1 // indirect

github.com/andybalholm/brotli v1.0.5 // indirect

github.com/boljen/go-bitmap v0.0.0-20151001105940-23cd2fb0ce7d // indirect

github.com/bufbuild/protocompile v0.6.0 // indirect

github.com/cloudflare/circl v1.3.3 // indirect

28 https://devhub.checkmarx.com/cve-details/CVE-2023-49295/
27 https://devhub.checkmarx.com/cve-details/CVE-2023-48795/
26 https://devhub.checkmarx.com/cve-details/Cx3111c14e-80ff/

7ASecurity © 2024
16

https://github.com/v2fly/v2ray-core/blob/5127b1635af9e789ed7a443c3a7a2e540429e24e/go.sum
https://devhub.checkmarx.com/cve-details/CVE-2023-49295/
https://devhub.checkmarx.com/cve-details/CVE-2023-48795/
https://devhub.checkmarx.com/cve-details/Cx3111c14e-80ff/
https://7asecurity.com


Pentest Report

github.com/davecgh/go-spew v1.1.1 // indirect

[...]

It is recommended to upgrade all underlying dependencies to their current versions to
resolve the above issues. To avoid similar issues in the future, an automated task and/or
commit hook should be created to regularly check for vulnerabilities in dependencies.
Some solutions that could help in this area are the yarn audit command29, the Snyk
tool30, and the OWASP Dependency Check project31. Ideally, such tools should be run
regularly by an automated job that alerts a lead developer or administrator about known
vulnerabilities in dependencies so that the patching process can start in a timely manner.

V2R-01-009 WP1: Possible DoS Attacks on HTTP Services (Medium)

Some V2Ray HTTP services use the net/http package serve function without timeout
settings, or fail to set timeouts where possible. This oversight exposes the application to
Slowloris32 attacks, where attackers prolong connections by slowly sending data, risking
Denial-of-Service (DoS) incidents. This issue is evident in the following code snippets:

Affected Files:
https://github.com/v2fly/v2ray-core/blob/…/roundtripper/httprt/httprt.go#L121-L126
https://github.com/v2fly/v2ray-core/blob/…/main/distro/debug/debug.go#L8-L10
https://github.com/v2fly/v2ray-core/blob/…/app/restfulapi/restful_api.go#L97-L102
https://github.com/v2fly/v2ray-core/blob/…/testing/servers/http/http.go#L29-L36
https://github.com/v2fly/v2ray-core/blob/…/app/browserforwarder/forwarder.go#L69-L97

Affected Code:
func (f *Forwarder) Start() error {

if f.config.ListenAddr != "" {

f.forwarder = handler.NewHttpHandle()

f.httpserver = &http.Server{Handler: f}

[...]

go func() {

if err := f.httpserver.Serve(listener); err != nil {

newError("cannot serve http forward server").Base(err).WriteToLog()

}

}()

}

return nil

}

32 https://www.imperva.com/learn/ddos/slowloris/
31 https://owasp.org/www-project-dependency-check/
30 https://snyk.io/
29 https://classic.yarnpkg.com/lang/en/docs/cli/audit/

7ASecurity © 2024
17

https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/transport/internet/request/roundtripper/httprt/httprt.go#L121-L126
https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/main/distro/debug/debug.go#L8-L10
https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/app/restfulapi/restful_api.go#L97-L102
https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/testing/servers/http/http.go#L29-L36
https://github.com/v2fly/v2ray-core/blob/cef5b1ec56d1a361a1d2d3f3627a83e8c1c4e190/app/browserforwarder/forwarder.go#L69-L97
https://www.imperva.com/learn/ddos/slowloris/
https://owasp.org/www-project-dependency-check/
https://snyk.io/
https://classic.yarnpkg.com/lang/en/docs/cli/audit/
https://7asecurity.com


Pentest Report

It is recommended to configure timeouts using a custom http.Server object with
appropriate timeouts, instead of the default http.ListenAndServe and http.Serve
functions that do not support timeout settings. The code below demonstrates how to
correctly instantiate an http.Server object with set timeouts:

Proposed Fix:
func (f *Forwarder) Start() error {

if f.config.ListenAddr != "" {

f.forwarder = handler.NewHttpHandle()

f.httpserver = &http.Server{

ReadHeaderTimeout: 15 * time.Second,

ReadTimeout: 15 * time.Second,

WriteTimeout: 10 * time.Second,

IdleTimeout: 30 * time.Second,

Handler: f

}

[...]

7ASecurity © 2024
18

https://7asecurity.com


Pentest Report

V2R-01-010 WP1: General Binary Hardening Recommendations (Info)

Testing confirmed that the V2Ray Linux binaries do not leverage a number of compiler
flags to mitigate potential memory-corruption vulnerabilities. As a result, the application
remains unnecessarily prone to the associated risks.

Linux binaries fail to leverage the following memory corruption prevention flags:
● Missing Stack canaries: This defense mechanism is used to detect and prevent

exploits from overwriting the return address.
● Missing RELRO: This leaves the GOT section writable. Without the RELRO flag,

buffer overflows on a global variable can overwrite GOT entries.
● Missing PIE: The Position Independent Executable (PIE) flag is a security

mechanism that enables Address Space Layout Randomization (ASLR), which
randomizes the location where system executables are loaded into memory.

Please note all the aforementioned findings can be confirmed using the checksec.sh33

utility.

Command:
checksec.sh --file v2ray

Output:
RELRO STACK CANARY NX PIE RPATH RUNPATH

No RELRO No canary found NX enabled No PIE No RPATH No RUNPATH

It is recommended to compile all binaries using the CGO_LDFLAGS='-fstack-protector'
command line argument34. Furthermore, incorporating -ldflags "-s -w" -buildmode=pie is
advised, although it is noted that compatibility depends on the Linux distribution35.
Utilizing these low-level build options adds an extra layer of security and further reduces
the risk of memory corruption vulnerabilities.

35 https://github.com/docker-library/golang/issues/231#issuecomment-694788522
34 https://github.com/docker-library/golang/issues/231#issuecomment-602054311
33 https://www.trapkit.de/tools/checksec/#releases

7ASecurity © 2024
19

https://github.com/docker-library/golang/issues/231#issuecomment-694788522
https://github.com/docker-library/golang/issues/231#issuecomment-602054311
https://www.trapkit.de/tools/checksec/#releases
https://7asecurity.com


Pentest Report

WP3: V2Ray Supply Chain Implementation
Retest Notes: The V2Ray team now archives the history of github releases and the
action log indefinitely36.

Introduction and General Analysis

The 8th Annual State of the Software Supply Chain Report, released in October 202237,
revealed a 742% average yearly increase in software supply chain attacks since 2019.
Some notable compromise examples include Okta38, Github39, Magento40, SolarWinds41,
and Codecov42, among many others. To mitigate this concerning trend, Google released
an End-to-End Framework for Supply Chain Integrity in June 202143, named
Supply-Chain Levels for Software Artifacts (SLSA)44.

This area of the report elaborates on the current state of the supply chain integrity
implementation of the V2Ray project, as audited against the SLSA framework. SLSA
assesses the security of software supply chains and aims to provide a consistent way to
evaluate the security of software products and their dependencies.

The following sections elaborate on the results against versions 0.1 and 1.0 of the SLSA
standard. At the time of this assignment, V2Ray components are hosted on public
GitHub repositories.

The V2Ray project uses the GitHub public repository for distribution, with well-defined
dependencies. Using a scripted build process, V2Ray improves consistency and speed
with every release. These processes align closely with the principles of SLSA, notably
enhancing Provenance. This signifies that not only is the build process documented, but
also, the resulting artifacts are intricately linked to a known and controlled build
environment.

While auditing the supply chain implementation, the V2Ray project provided several
positive impressions that must be acknowledged here:

● The project provides clear and comprehensive documentation on how to set up
and use V2Ray.

44 https://slsa.dev/spec/
43 https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
42 https://blog.gitguardian.com/codecov-supply-chain-breach/
41 https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack...
40 https://sansec.io/research/rekoobe-fishpig-magento
39 https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
38 https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
37 https://www.sonatype.com/press-releases/2022-software-supply-chain-report
36 https://www.v2fly.org/en_US/developer/intro/releasearchive.html

7ASecurity © 2024
20

https://slsa.dev/
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://blog.gitguardian.com/codecov-supply-chain-breach/
https://www.techtarget.com/searchsecurity/ehandbook/SolarWinds-supply-chain-attack-explained-Need-to-know-info
https://sansec.io/research/rekoobe-fishpig-magento
https://github.blog/2022-04-15-security-alert-stolen-oauth-user-tokens/
https://www.okta.com/blog/2022/03/updated-okta-statement-on-lapsus/
https://www.sonatype.com/press-releases/2022-software-supply-chain-report
https://www.v2fly.org/en_US/developer/intro/releasearchive.html
https://7asecurity.com


Pentest Report

● The application is Signed in OpenBSD Signify format, allowing the verification of
binaries.

● With GitHub Actions, the release build process is automated, decreasing the
possibility of human error and resulting in more dependable releases.

● The build is designed to be reproducible, allowing independent verification of the
build process.

● The build process and its logs are public, allowing anyone to verify the process.

SLSA v1.0 Analysis and Recommendations

SLSA v1.0 defines a set of four levels that describe the maturity of the software supply
chain security practices implemented by a software project as follows:

● Build L0: No guarantees represents the lack of SLSA45.
● Build L1: Provenance exists. The package has provenance showing how it was

built. This can be used to prevent mistakes but is trivial to bypass or forge46.
● Build L2: Hosted build platform. Builds run on a hosted platform that generates

and signs the provenance47.
● Build L3: Hardened builds. Builds run on a hardened build platform that offers

strong tamper protection48.

To produce artifacts with a specific SLSA level, the responsibility is split between the
Build platform and the Producer. Broadly speaking, the Build platform must strengthen
the security controls to achieve a specific level, while the Producer must choose and
adopt a Build platform capable of achieving a desired SLSA level, implementing security
controls as specified by the chosen platform.

The following sections summarize the results of the software supply chain security
implementation audit, based on the SLSA v1.0 framework. Green check marks indicate
that evidence of the SLSA requirement was found.

Producer

A package producer is the organization that owns and releases the software. It might be
an open-source project, a company, a team within a company, or even an individual. The
producer must select a build platform capable of reaching the desired SLSA Build Level.

In the context of the SLSA v1.0 framework, V2Ray adherence to Build Level 3 (L3) is
demonstrated through its management of software artifact provenance. The V2Ray
project is hosted on GitHub, a platform capable of producing Build Level 3 provenance.

48 https://slsa.dev/spec/v1.0/levels#build-l3
47 https://slsa.dev/spec/v1.0/levels#build-l2
46 https://slsa.dev/spec/v1.0/levels#build-l1
45 https://slsa.dev/spec/v1.0/levels#build-l0

7ASecurity © 2024
21

https://slsa.dev/spec/v1.0/levels#build-l3
https://slsa.dev/spec/v1.0/levels#build-l2
https://slsa.dev/spec/v1.0/levels#build-l1
https://slsa.dev/spec/v1.0/levels#build-l0
https://7asecurity.com


Pentest Report

This ensures that V2Ray fulfills the requirement to "Choose an appropriate build
platform." Moreover, the V2Ray artifact generation process is clearly defined. Each step
is meticulously scripted, and the use of GitHub Actions is leveraged to produce builds for
each supported platform, in this case, V2Ray meets the Producer requirements,
specifically "Follow a consistent build process."

Furthermore, V2Ray ensures that provenance information is not only present but also
effectively distributed through the respective package manager ecosystems. By
leveraging these established ecosystems, V2Ray effectively satisfies the Producer
requirements essential for achieving Build Level 3 (L3) within the SLSA framework.

Requirement L1 L2 L3

Choose an appropriate build platform ✅ ✅ ✅

Follow a consistent build process ✅ ✅ ✅

Distribute provenance ✅ ✅ ✅

Build platform

A package build platform is the infrastructure used to transform the software from source
to package. This includes the transitive closure of all hardware, software, persons, and
organizations that may influence the build. A build platform is often a hosted,
multi-tenant build service, but it could be a system of multiple independent rebuilders, a
special-purpose build platform used by a single software project, or even the workstation
of an individual.

The build process, scripted via GitHub Actions49, meticulously produces authenticated
provenance, adhering to the exits and authentic requirements of SLSA 1.0. With each
execution, the build platform generates signed logs, ensuring the validity and structured
provenance that meet the unforgettable requirement. This meticulous approach
empowers consumers to validate authenticity through guaranteed integrity and defined
trust levels, thereby achieving compliance with both Level 1 and Level 2 requirements of
SLSA v1.0. Additionally, each build step was carried out via a hosted build platform,
which ensured that the processes were carried out in a separate environment free from
unintentional outside interference. This satisfies the SLSA v1.0 Hosted and Isolated
requirements.

49 https://github.com/v2fly/V2Ray-core/blob/master/.github/workflows/release.yml

7ASecurity © 2024
22

https://github.com/v2fly/v2ray-core/blob/master/.github/workflows/release.yml
https://7asecurity.com


Pentest Report

Requirement Degree L1 L2 L3

Provenance generation Exists ✅ ✅ ✅

Authentic ✅ ✅

Unforgeable ✅

Isolation strength Hosted ✅ ✅

Isolated ✅

In conclusion, the V2Ray project fully complies with SLSA v1.0 Level 3 standards,
representing the best practices in the industry in terms of security, integrity, and
reliability.

SLSA v0.1 Analysis and Recommendations

SLSA v0.1 defines a set of five levels50 that describe the maturity of the software supply
chain security practices implemented by a software project as follows:

● L0: No guarantees. This level represents the lack of any SLSA level.
● L1: The build process must be fully scripted/automated and generate

provenance.
● L2: Requires using version control and a hosted build service that generates

authenticated provenance.
● L3: The source and build platforms meet specific standards to guarantee the

auditability of the source and the integrity of the provenance respectively.
● L4: Requires a two-person review of all changes and a hermetic, reproducible

build process.

The following sections summarize the results of the software supply chain security
implementation audit based on the SLSA v0.1 framework. Green check marks indicate
that evidence of the noted requirement was found.

Source code control requirements:

Requirement L1 L2 L3 L4

Version controlled ✅ ✅ ✅ ✅

Verified history ✅ ✅

50 https://slsa.dev/spec/v0.1/levels

7ASecurity © 2024
23

https://slsa.dev/spec/v0.1/levels
https://7asecurity.com


Pentest Report

Retained indefinitely ⛔ (18 mo.) ⛔

Two-person reviewed ⛔

Build process requirements:

Requirement L1 L2 L3 L4

Scripted build ✅ ✅ ✅ ✅

Build service ✅ ✅ ✅

Build as code ✅ ✅

Ephemeral environment ✅ ✅

Isolated ✅ ✅

Parameterless ✅

Hermetic ✅

Reproducible ✅

Common requirements:

This includes common requirements for every trusted system involved in the supply
chain, such as source, build, distribution, etc:

Requirement L1 L2 L3 L4

Security ⛔

Access ⛔

Superusers ⛔

Provenance requirements:

Requirement L1 L2 L3 L4

Available ✅ ✅ ✅ ✅

Authenticated ✅ ✅ ✅

Service generated ✅ ✅ ✅

7ASecurity © 2024
24

https://7asecurity.com


Pentest Report

Non-falsifiable ✅ ✅

Dependencies complete ✅

Provenance content requirements:

Requirement L1 L2 L3 L4

Identifies artifact ✅ ✅ ✅ ✅

Identifies builder ✅ ✅ ✅ ✅

Identifies build instructions ✅ ✅ ✅ ✅

Identifies source code ✅ ✅ ✅

Identifies entry point ✅ ✅

Includes all build parameters ✅ ✅

Includes all transitive
dependencies

✅

Includes reproducible info ✅

Includes metadata ✅ ✅ ✅ ✅

In conclusion, although V2Ray is still not SLSA v0.1 L3 compliant, due to the available
GitHub tools it is possible to reach level SLSA v0.1 L3 and L4 as follows:

● A GitHub Artifact retention policy51 ought to be implemented to comply with the
retained indefinitely requirements.

● GitHub branch protection rules52 should be implemented to comply with the
Two-person reviewed requirements.

52 https://github.blog/2018-03-23-require-multiple-reviewers/
51 https://docs.github.com/en/organizations/managing-organization-settings/configuring-the-retention-[...]

7ASecurity © 2024
25

https://github.blog/2018-03-23-require-multiple-reviewers/
https://docs.github.com/en/organizations/managing-organization-settings/configuring-the-retention-period-for-github-actions-artifacts-and-logs-in-your-organization
https://7asecurity.com


Pentest Report

Conclusion

The V2Ray project defended itself well against a broad range of attack vectors. In fact,
not a single critical or high severity issue could be identified during this engagement.
Continued cycles of security testing and hardening will further fortify the platform, making
it even more resistant to potential attacks.

7ASecurity would like to highlight several positive aspects of V2Ray, as observed by the
audit team:

● The evaluation of V2Ray backend components revealed a high degree of
resilience against common web application security threats. Specifically, no
vulnerabilities were detected in areas such as Command Injection, SQL Injection
(SQLi), Cross-Site Request Forgery (CSRF), Local File Inclusion (LFI), or
Remote Code Execution (RCE) during the assessment.

● The source code is meticulously organized and documented, which facilitates the
process of understanding its functionality.

● The configuration process for V2Ray, applicable to both client and server modes,
is straightforward.

● The application demonstrates robustness against malformed request headers
and stress scenarios.

● The presence of an extensive test suite underscores the application
maintainability and adherence to best practices in writing modular and testable
code.

● The consistent efforts in maintenance and updates by the development team
reflect a strong dedication to ensuring security and fostering ongoing
enhancement.

● A commitment to secure coding practices, particularly those pertinent to the Go
programming language, is evident.

● The application support for diverse file formats in its release distributions,
coupled with a uniform strategy for generating binaries with security checks,
demonstrates a methodical approach to building and distribution.

The security of the V2Ray project components may be enhanced with a focus on the
following areas:

● Anti-Fingerprinting Improvements: It is possible to prevent multiple
fingerprinting scenarios by adding random User-Agent headers (V2R-01-006),
randomized JA3 fingerprints (V2R-01-007), and improving adherence to RFCs
(V2R-01-008).

● Build Hardening: MacOS (V2R-01-001) and Linux (V2R-01-010) binaries may
be hardened against environment variable attacks and memory corruption
vulnerabilities by leveraging a number of platform mechanisms.

● Software Patching: All V2Ray components should adhere to appropriate

7ASecurity © 2024
26

https://7asecurity.com


Pentest Report

software patching procedures, consistently applying security patches in a timely
manner (V2R-01-005). In a day and age when a significant portion of code
comes from underlying software dependencies, routine patching is crucial to
prevent potential security vulnerabilities. Possible automation for this could
include tools like Snyk.io53 or Renovate Bot54.

● File Permissions: Application files should have the minimum possible
permissions for the V2Ray clients and servers to work, as this will limit the
potential for privilege escalation and leaks (V2R-01-004).

● Mitigation of possible DoS Attacks: Adequate timeouts should be in place to
eliminate the potential for certain types of DoS attacks (V2R-01-009).

● Usage of Sound Cryptography: V2Ray should reduce the potential for usage
of insecure TLS protocols (V2R-01-002), and insecure
Pseudo-Random-Number-Generators (PRNG) (V2R-01-003).

● Supply Chain Hardening: V2Ray could take advantage of a number of features
like GitHub Branch protection rules and GitHub Actions to easily improve its
Supply Chain security posture against the SLSA standard (WP3). A good starting
point in this regard, could be to integrate automated tools like
slsa-github-generator55 and slsa-verifier56 into the build process.

It is advised to address all issues identified in this report, including informational and low
severity tickets where possible. This approach will not only significantly enhance the
security posture of the platform but also contribute to a reduction in the number of tickets
in future audits.

Once all recommendations in this report are addressed and verified, a more thorough
review, ideally including another code audit, is highly recommended to ensure adequate
security coverage of the platform. Future audits should ideally allocate a greater budget,
enabling test teams to delve into more complex attack scenarios.

It is suggested to test the application regularly, at least once a year or when substantial
changes are deployed, to make sure new features do not introduce undesired security
vulnerabilities. Consistently following this approach will lead to a reduction in the number
of security issues and fortify the application against online attacks over time.

7ASecurity would like to take this opportunity to sincerely thank the V2Ray team, for
their exemplary assistance and support throughout this audit. Last but not least,
appreciation must be extended to the Open Technology Fund (OTF) for sponsoring this
project.

56 https://github.com/slsa-framework/slsa-verifier
55 https://github.com/slsa-framework/slsa-github-generator
54 https://github.com/renovatebot/renovate
53 https://snyk.io/

7ASecurity © 2024
27

https://github.com/slsa-framework/slsa-verifier
https://github.com/slsa-framework/slsa-github-generator
https://github.com/renovatebot/renovate
https://snyk.io/
https://7asecurity.com

