LLVM sBPF sign-extend optimzation

(i W=V @Richard Patel JuT LR}

Problem

In sBPF there are no dedicated comparison operators and no condition registers.
Instead, sBPF features conditional jumps like jsgt r2, r3, OFF (jumpto OFF if r2 > r3).

There are conditional jumps for 64-bit unsigned and 64-bit signed registers.

Expressing 32-bit signed conditions is quite difficult.

Example

1 void ex1(int r1, int r2) {
2 if(rl1 < r2) abort();
3 3}

Suppose the 32-bit value of wlis @ and the value of w2 is 1.

e wl = 00000000

e w2 = 00000001

Now remember that wi and w2 are sub-registers of r1 and r2. Since we have no jslt instruction that operates on 32-bit registers, we

will have to use ri1 and r2 instead.

From the compiler’s point of view, since we have been dealing with sub-registers, the upper half of the “parent” register is undefined:
e rl = ??7?7?7?7??700000000

° r2 = ??2??????700000001

Note that every sBPF instruction clearly defines what the upper 32-bit of an output register are. But crucially, the output differs between
different 32-bit ALU instructions. In x86, using eax as an output implicitly zeros the upper half of rax . However, sBPF 32-bit instructions do

not always write zeros.

This means that we could encounter a bit pattern like so:

frffffffoo000000

e rl

* r2 = 0000000000000001

Both jslt and jlt (signed and unsigned “jump if less”) would return the incorrect result.

Current Solution

The compiler sign extends wi and w2 (as of anza-xyz/llivm-project@8bc30e821e)

mov32 w8, wil
1sh64 r8, 32
arsh64 r8, 32 # sign extend

mov32 w9, w2
1sh64 r9, 32
arsh64 r9, 32 # sign extend

© 0 N O g A~ W N B

jslt r8, r9

This is unfortunate. We require two extra registers and 6 extra instructions in total.

Slightly Better Solution

The add32 REG, IMM instruction implicitly sign extends. Thus, we could instead do

mov32 w8, wil
add32 w8, 0 # sign extend

mov32 w9, w2
add32 w9, 0 # sign extend

~N o 0 A~ W N B

jslt r8, r9

This saves two instructions.

The compiler is still dumb

Let’s consider the following code (see llvm/test/CodeGen/SBF/loop-exit-cond.ll)

1 typedef unsigned long u64;

2 void foo(char *data, int idx, u64 *);
3 int test(int len, char *data) {

4 if (len < 100) {

5 for (int i = 1; i < len; i++) {
6 u64 d[1];

7 d[0] = data[e] ?: '0';

8 foo("%c", i, d);

9 }

10 3}

11 return 0;

12 3}

Let’s look at the generated code. To prepare, run the following commands in your LLVM checkout:

Build LLVM
cmake --build build -j

Run the test
build/bin/11lvm-1it ./llvm/test/CodeGen/SBF/loop-exit-cond.1ll -v

Inspect the generated assembly
build/bin/1lc -march=sbf -mcpu=v3 /data/ripatel/llvm-project/build/test/CodeGen/SBF/Output/loop-exit-cond.1l.tmpl

With the current compiler code, the generated loop exit condition is this:

; W7 stores "int i"

; r8 stores "long len" (sign extended)

add32 w7, 1

mové4 r2, r7

1sh64 r2, 32

arshé4 r2, 32

jslt r2, r8, LBBO_8

0 N o o A~ W N B

With the “slightly better” patch, the generated code is this:

1 ,; w8 stores "int i"

; r3 stores "long len" (sign extended)

add32 w8, 1
mov32 w2, w8
add32 w2, 0
jslt r2, r3, LBBO_8

SR OO (T A OB I\

The above snippet is still problematic. r8 is already sign extended, so the mov32 w2, w8 and add32 w2, 0 instructions are unnecessary.

This is fixed by a peephole optimization that loops over SSA blocks. Whenever we find an explicit sign extension construct with an input
produced by a sign-extending opcode (add32, sub32, mul32), we eliminate the sign extension.

Finally, we get:

; w8 stores "int i"

; r2 stores "long len" (sign extended)

add32 w8, 1
jslt r8, r2, LBBO_8

a b w N B

