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1 The Compressible Stokes System

The compressible Stokes system (without thermal expansion) is given by

−∇ · τ +∇p = f , (1)

−∇ · u = βṗ, (2)

where τ is the deviatoric stress tensor, p is pressure, β := 1
ρ
∂ρ
∂p characterizes the compressiblity of the material,

and f represents a body force. Approximating the time derivative of p with a backward Euler scheme, we can
rewrite Eq. (2) as

∇ · u+
βp

∆t
=
βp0

∆t
, (3)

where ∆t is the time step length, and p0 denotes the pressure in the previous time step.
We derive the weak for of the momentum conservative equation by integrating the inner product of Eq. (1)

and a virtual velocity v across the computational domain Ω, which yields after integrating by part∫
Ω

ε(v) : τdΩ−
∫
Ω

∇ · vpdΩ =

∫
Ω

v · fdΩ, (4)

where ε(·) := 1
2 [∇(·)+∇T (·)]− 1

3∇ · (·) is the deviatoric symmetric gradient operator. Similarly, the weak form
of mass conservative equation is obtained by multiplying Eq. (3) by a virtual pressure q and integrating across
Ω, which gives ∫

Ω

q∇ · udΩ +

∫
Ω

q
βp

∆t
dΩ =

∫
Ω

q
βp0

∆t
dΩ. (5)

2 Constitutive Relation

Here we consider a Maxwell-type viscoelastic plastic model, which is based on the additive decomposition of
the deviatoric strain rate ε:

ε = εv + εe + εp. (6)

The constitutive relationship between τ and ε can then be expressed as

ε =
τ

2η
+

τ̊

2G
+ γ

∂Ψ

∂τ
, (7)
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where η = η(u, p) is the viscosity, G is the shear modulus, γ is the plastic multiplyer, Ψ is the plastic potential,
and τ̊ denotes the co-rotational derivative of τ . We assume that the plastic flow is governed by the Drucker-
Prager model:

Φ =τII − ξp− ζ, (8)

Ψ =τII − ξ̄p, (9)

where τII :=
»

1
2τ : τ stands for the second invariant of τ , ξ, ξ̄ and ζ are material parameters related with

frictional angle ϕ, dilatancy angle ψ and cohesion c. Integrating the stress rate with a first-order difference
scheme, i.e. τ = τ 0 + τ̊∆t, we can rewrite Eq. (7) as

τ = 2ηve
Å
ε̃− γ

∂Ψ

∂τ

ã
= 2ηve

Å
ε̃− γ

τ

2τII

ã
, (10)

where ηve and ε̃ are defined as

ηve :=

Å
1

η(u, p)
+

1

G∆t

ã−1

, ε̃ := ε+
τ 0

2G∆t
. (11)

The volumetric constitutive relation is based on an additive decomposition of the divergence of velocity
(notice the negative sign for the plastic component)

∇ · u = −β(p− p0)

∆t
− γ

∂Ψ

∂p
= −β(p− p0)

∆t
+ γξ̄. (12)

3 Newton Linearization

Substituting Eq. (12) in Eqs. (4) and (5), we obtain the following nonlinear system

Fu :=

∫
Ω

ε(v) : τdΩ−
∫
Ω

∇ · vpdΩ−
∫
Ω

v · fdΩ = 0, (13)

Fp :=−
∫
Ω

q∇ · udΩ−
∫
Ω

qβp

∆t
dΩ +

∫
Ω

q

Å
βp0

∆t
+ γξ̄

ã
dΩ = 0. (14)

If we apply the Newton-Raphson method to solve Eqs. (13) and (14), then in each iteration we need to solve a
linear equation set

∂Fu

∂ε
: dε+

∂Fu

∂p
: dp = −Fu, (15)

∂Fp

∂ε
: dε+

∂Fp

∂p
: dp = −Fp. (16)
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The differentiations of Fu and Fp are given by

∂Fu

∂ε
: dε =

∫
Ω

ε(v) :
∂τ

∂ε̃
: dε̃dΩ, (17)

∂Fu

∂p
dp =

∫
Ω

ε(v) :
∂τ

∂p
dpdΩ−

∫
Ω

∇ · vdpdΩ, (18)

∂Fp

∂ε
: dε =−

∫
Ω

q∇ · dudΩ +

∫
Ω

qξ̄
∂γ

∂ε̃
: dε̃dΩ, (19)

∂Fp

∂p
dp =−

∫
Ω

qβdp

∆t
dΩ +

∫
Ω

qξ̄
∂γ

∂p
dpdΩ. (20)

Comparing to the linearized system of incompressible Stokes equations, the additional terms related with plastic
dilation are (terms with β and/or ξ̄):

bottom left:

∫
Ω

qξ̄
∂γ

∂ε̃
: dε̃dΩ, (21)

bottom right: −
∫
Ω

qβ

∆t
dΩ +

∫
Ω

qξ̄
∂γ

∂p
dpdΩ. (22)

4 The Effective Viscosity

To calculate the additional terms, we need to know the derivatives of γ with respect to ε̃ and p. As for the
differentiation of viscosity, we use a finite difference approximation to calculate dγ:

∂γ

∂ε̃

∣∣∣∣
(ε̃,p)

≈ γ(ε̃+ δε̃, p)− γ(ε̃, p)

δε̃
,

∂γ

∂p

∣∣∣∣
(ε̃,p)

≈ γ(ε̃, p+ δp)− γ(ε̃, p)

δp
.

(23)

The expression of γ in terms of ε̃ and p can be derived as follows: in computation, we first assume that plastic
yielding occur does not occur and then calculate a trial stress state σtr = τ tr − ptrI accordingly. If the value
of Φtr := τ trII − ξptr − ζ is greater than zero, we map the stress state onto the yielding envelop according to the
plastic flow rule. Substitution of Eqs. (10) and (12) in Eq. (8) gives

Φ =τII − ξp− ζ

=2ηveε̃II

Å
1− γ

2ε̃II

ã
− ξ

Å
ptr +

γξ̄∆t

β

ã
− ζ

=Φtr − γ

Å
ηve +

ξξ̄∆t

β

ã
=0,

(24)

from which we get

γ =
Φtr

ηve + ξξ̄∆t/β
. (25)
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In practice, we often define an “effective” viscosity ηeff as

ηeff :=
τII
2ε̃II

= ηve
Å
1− γ

2ε̃II

ã
= ηve

ï
1− ηve − (ξptr + ζ)/2ε̃II

ηve + ξξ̄∆t/β

ò
=
ξξ̄∆t/β + (ξptr + ζ)/2ε̃II

1 + ξξ̄∆t/(βηve)
. (26)

When ξ̄ = 0, we have ηeff = (ξptr + ζ)/2ε̃II, which is the common expression of the effective viscosity.

Remark 1. If we impose plastic dilation on an incompressible material, i.e. β = 0 and ξ̄ > 0, then the effective
viscosity becomes

ηeff ≈ ξξ̄∆t/β

ξξ̄∆t/(βηve)
= ηve,

which implies that no plastic yielding can take place under this situation.
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