Consistent Linearization for Compressible Stokes System with Plastic Dilation

Yimin Jin

June 30, 2024

1 The Compressible Stokes System

The compressible Stokes system (without thermal expansion) is given by

$$-\nabla \cdot \boldsymbol{\tau} + \nabla p = \boldsymbol{f},\tag{1}$$

$$-\nabla \cdot \boldsymbol{u} = \beta \dot{p},\tag{2}$$

where τ is the deviatoric stress tensor, p is pressure, $\beta := \frac{1}{\rho} \frac{\partial \rho}{\partial p}$ characterizes the compressibility of the material, and f represents a body force. Approximating the time derivative of p with a backward Euler scheme, we can rewrite Eq. (2) as

$$\nabla \cdot \boldsymbol{u} + \frac{\beta p}{\Delta t} = \frac{\beta p^0}{\Delta t},\tag{3}$$

where Δt is the time step length, and p^0 denotes the pressure in the previous time step.

We derive the weak for of the momentum conservative equation by integrating the inner product of Eq. (1) and a virtual velocity v across the computational domain Ω , which yields after integrating by part

$$\int_{\Omega} \boldsymbol{\varepsilon}(\boldsymbol{v}) : \boldsymbol{\tau} d\Omega - \int_{\Omega} \nabla \cdot \boldsymbol{v} p d\Omega = \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{f} d\Omega, \tag{4}$$

where $\varepsilon(\cdot) := \frac{1}{2} [\nabla(\cdot) + \nabla^T(\cdot)] - \frac{1}{3} \nabla \cdot (\cdot)$ is the deviatoric symmetric gradient operator. Similarly, the weak form of mass conservative equation is obtained by multiplying Eq. (3) by a virtual pressure q and integrating across Ω , which gives

$$\int_{\Omega} q \nabla \cdot \boldsymbol{u} d\Omega + \int_{\Omega} q \frac{\beta p}{\Delta t} d\Omega = \int_{\Omega} q \frac{\beta p^{0}}{\Delta t} d\Omega.$$
 (5)

2 Constitutive Relation

Here we consider a Maxwell-type viscoelastic plastic model, which is based on the additive decomposition of the deviatoric strain rate ε :

$$\varepsilon = \varepsilon^{v} + \varepsilon^{e} + \varepsilon^{p}. \tag{6}$$

The constitutive relationship between τ and ε can then be expressed as

$$\varepsilon = \frac{\tau}{2n} + \frac{\mathring{\tau}}{2G} + \gamma \frac{\partial \Psi}{\partial \tau},\tag{7}$$

where $\eta = \eta(\boldsymbol{u}, p)$ is the viscosity, G is the shear modulus, γ is the plastic multiplyer, Ψ is the plastic potential, and $\mathring{\boldsymbol{\tau}}$ denotes the co-rotational derivative of $\boldsymbol{\tau}$. We assume that the plastic flow is governed by the Drucker-Prager model:

$$\Phi = \tau_{\rm II} - \xi p - \zeta,\tag{8}$$

$$\Psi = \tau_{\rm II} - \bar{\xi}p,\tag{9}$$

where $\tau_{\text{II}} := \sqrt{\frac{1}{2}\boldsymbol{\tau} : \boldsymbol{\tau}}$ stands for the second invariant of $\boldsymbol{\tau}$, $\boldsymbol{\xi}$, $\bar{\boldsymbol{\xi}}$ and $\boldsymbol{\zeta}$ are material parameters related with frictional angle ϕ , dilatancy angle ψ and cohesion c. Integrating the stress rate with a first-order difference scheme, i.e. $\boldsymbol{\tau} = \boldsymbol{\tau}^0 + \mathring{\boldsymbol{\tau}} \Delta t$, we can rewrite Eq. (7) as

$$\tau = 2\eta^{\text{ve}} \left(\tilde{\varepsilon} - \gamma \frac{\partial \Psi}{\partial \tau} \right) = 2\eta^{\text{ve}} \left(\tilde{\varepsilon} - \gamma \frac{\tau}{2\tau_{\text{II}}} \right), \tag{10}$$

where η^{ve} and $\tilde{\boldsymbol{\varepsilon}}$ are defined as

$$\eta^{\text{ve}} := \left(\frac{1}{\eta(\boldsymbol{u}, p)} + \frac{1}{G\Delta t}\right)^{-1}, \qquad \tilde{\varepsilon} := \varepsilon + \frac{\boldsymbol{\tau}^0}{2G\Delta t}.$$
(11)

The volumetric constitutive relation is based on an additive decomposition of the divergence of velocity (notice the negative sign for the plastic component)

$$\nabla \cdot \boldsymbol{u} = -\frac{\beta(p - p^0)}{\Delta t} - \gamma \frac{\partial \Psi}{\partial p} = -\frac{\beta(p - p^0)}{\Delta t} + \gamma \bar{\xi}.$$
 (12)

3 Newton Linearization

Substituting Eq. (12) in Eqs. (4) and (5), we obtain the following nonlinear system

$$F_{u} := \int_{\Omega} \boldsymbol{\varepsilon}(\boldsymbol{v}) : \boldsymbol{\tau} d\Omega - \int_{\Omega} \nabla \cdot \boldsymbol{v} p d\Omega - \int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{f} d\Omega = 0, \tag{13}$$

$$F_p := -\int_{\Omega} q \nabla \cdot \boldsymbol{u} d\Omega - \int_{\Omega} \frac{q \beta p}{\Delta t} d\Omega + \int_{\Omega} q \left(\frac{\beta p^0}{\Delta t} + \gamma \bar{\xi} \right) d\Omega = 0.$$
 (14)

If we apply the Newton-Raphson method to solve Eqs. (13) and (14), then in each iteration we need to solve a linear equation set

$$\frac{\partial F_u}{\partial \varepsilon} : d\varepsilon + \frac{\partial F_u}{\partial p} : dp = -F_u, \tag{15}$$

$$\frac{\partial F_p}{\partial \varepsilon} : d\varepsilon + \frac{\partial F_p}{\partial p} : dp = -F_p. \tag{16}$$

The differentiations of F_u and F_p are given by

$$\frac{\partial F_u}{\partial \varepsilon} : d\varepsilon = \int_{\Omega} \varepsilon(\boldsymbol{v}) : \frac{\partial \boldsymbol{\tau}}{\partial \tilde{\varepsilon}} : d\tilde{\varepsilon} d\Omega, \tag{17}$$

$$\frac{\partial F_u}{\partial p} dp = \int_{\Omega} \boldsymbol{\varepsilon}(\boldsymbol{v}) : \frac{\partial \boldsymbol{\tau}}{\partial p} dp d\Omega - \int_{\Omega} \nabla \cdot \boldsymbol{v} dp d\Omega, \tag{18}$$

$$\frac{\partial F_p}{\partial \varepsilon} : d\varepsilon = -\int_{\Omega} q \nabla \cdot d\mathbf{u} d\Omega + \int_{\Omega} q \bar{\xi} \frac{\partial \gamma}{\partial \tilde{\varepsilon}} : d\tilde{\varepsilon} d\Omega, \tag{19}$$

$$\frac{\partial F_p}{\partial p} dp = -\int_{\Omega} \frac{q\beta dp}{\Delta t} d\Omega + \int_{\Omega} q\bar{\xi} \frac{\partial \gamma}{\partial p} dp d\Omega.$$
 (20)

Comparing to the linearized system of incompressible Stokes equations, the additional terms related with plastic dilation are (terms with β and/or $\bar{\xi}$):

bottom left:
$$\int_{\Omega} q\bar{\xi} \frac{\partial \gamma}{\partial \tilde{\varepsilon}} : d\tilde{\varepsilon} d\Omega, \tag{21}$$

bottom right:
$$-\int_{\Omega} \frac{q\beta}{\Delta t} d\Omega + \int_{\Omega} q\bar{\xi} \frac{\partial \gamma}{\partial p} dp d\Omega. \tag{22}$$

4 The Effective Viscosity

To calculate the additional terms, we need to know the derivatives of γ with respect to $\tilde{\varepsilon}$ and p. As for the differentiation of viscosity, we use a finite difference approximation to calculate $d\gamma$:

$$\frac{\partial \gamma}{\partial \tilde{\varepsilon}}\Big|_{(\tilde{\varepsilon},p)} \approx \frac{\gamma(\tilde{\varepsilon} + \delta\tilde{\varepsilon}, p) - \gamma(\tilde{\varepsilon}, p)}{\delta\tilde{\varepsilon}},
\frac{\partial \gamma}{\partial p}\Big|_{(\tilde{\varepsilon},p)} \approx \frac{\gamma(\tilde{\varepsilon}, p + \delta p) - \gamma(\tilde{\varepsilon}, p)}{\delta p}.$$
(23)

The expression of γ in terms of $\tilde{\epsilon}$ and p can be derived as follows: in computation, we first assume that plastic yielding occur does not occur and then calculate a trial stress state $\sigma^{\text{tr}} = \tau^{\text{tr}} - p^{\text{tr}} I$ accordingly. If the value of $\Phi^{\text{tr}} := \tau^{\text{tr}}_{\text{II}} - \xi p^{\text{tr}} - \zeta$ is greater than zero, we map the stress state onto the yielding envelop according to the plastic flow rule. Substitution of Eqs. (10) and (12) in Eq. (8) gives

$$\Phi = \tau_{\text{II}} - \xi p - \zeta$$

$$= 2\eta^{\text{ve}} \tilde{\varepsilon}_{\text{II}} \left(1 - \frac{\gamma}{2\tilde{\varepsilon}_{\text{II}}} \right) - \xi \left(p^{\text{tr}} + \frac{\gamma \bar{\xi} \Delta t}{\beta} \right) - \zeta$$

$$= \Phi^{\text{tr}} - \gamma \left(\eta^{\text{ve}} + \frac{\xi \bar{\xi} \Delta t}{\beta} \right)$$

$$= 0,$$
(24)

from which we get

$$\gamma = \frac{\Phi^{\text{tr}}}{\eta^{\text{ve}} + \xi \bar{\xi} \Delta t / \beta}.$$
 (25)

In practice, we often define an "effective" viscosity η^{eff} as

$$\eta^{\text{eff}} := \frac{\tau_{\text{II}}}{2\tilde{\varepsilon}_{\text{II}}} = \eta^{\text{ve}} \left(1 - \frac{\gamma}{2\tilde{\varepsilon}_{\text{II}}} \right) = \eta^{\text{ve}} \left[1 - \frac{\eta^{\text{ve}} - (\xi p^{\text{tr}} + \zeta)/2\tilde{\varepsilon}_{\text{II}}}{\eta^{\text{ve}} + \xi \bar{\xi} \Delta t/\beta} \right] = \frac{\xi \bar{\xi} \Delta t/\beta + (\xi p^{\text{tr}} + \zeta)/2\tilde{\varepsilon}_{\text{II}}}{1 + \xi \bar{\xi} \Delta t/(\beta \eta^{\text{ve}})}. \tag{26}$$

When $\bar{\xi} = 0$, we have $\eta^{\text{eff}} = (\xi p^{\text{tr}} + \zeta)/2\tilde{\varepsilon}_{\text{II}}$, which is the common expression of the effective viscosity.

Remark 1. If we impose plastic dilation on an incompressible material, i.e. $\beta = 0$ and $\bar{\xi} > 0$, then the effective viscosity becomes

$$\eta^{
m eff} pprox rac{\xi ar{\xi} \Delta t / eta}{\xi ar{\xi} \Delta t / (eta \eta^{
m ve})} = \eta^{
m ve},$$

which implies that no plastic yielding can take place under this situation.