Skip to content

Commit 1bfde94

Browse files
committed
Init commit
0 parents  commit 1bfde94

File tree

823 files changed

+2839493
-0
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

823 files changed

+2839493
-0
lines changed

.ipynb_checkpoints/Dropout-checkpoint.ipynb

+1,779
Large diffs are not rendered by default.

.ipynb_checkpoints/LSTM-checkpoint.ipynb

+1,845
Large diffs are not rendered by default.

.ipynb_checkpoints/Q-LSTM-checkpoint.ipynb

+2,374
Large diffs are not rendered by default.

.ipynb_checkpoints/QLSTM-CIFG-checkpoint.ipynb

+1,643
Large diffs are not rendered by default.

.ipynb_checkpoints/QLSTM-Copy1-checkpoint.ipynb

+2,079
Large diffs are not rendered by default.

.ipynb_checkpoints/QLSTM-GRU-Copy1-checkpoint.ipynb

+1,266
Large diffs are not rendered by default.

.ipynb_checkpoints/QLSTM-GRU-checkpoint.ipynb

+4,597
Large diffs are not rendered by default.

.ipynb_checkpoints/QLSTM-checkpoint.ipynb

+4,728
Large diffs are not rendered by default.

.ipynb_checkpoints/QLSTM-classical-adjusted-checkpoint.ipynb

+2,172
Large diffs are not rendered by default.

.ipynb_checkpoints/QLSTM-classical-checkpoint.ipynb

+1,764
Large diffs are not rendered by default.

.ipynb_checkpoints/QLSTM-dropout-checkpoint.ipynb

+1,779
Large diffs are not rendered by default.

.ipynb_checkpoints/QLSTM-peephole-checkpoint.ipynb

+1,616
Large diffs are not rendered by default.

.ipynb_checkpoints/QLSTM2-checkpoint.ipynb

+3,744
Large diffs are not rendered by default.
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,6 @@
1+
{
2+
"cells": [],
3+
"metadata": {},
4+
"nbformat": 4,
5+
"nbformat_minor": 5
6+
}

.ipynb_checkpoints/RNN-checkpoint.ipynb

+1,400
Large diffs are not rendered by default.
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,239 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": 3,
6+
"id": "820c5fca",
7+
"metadata": {},
8+
"outputs": [],
9+
"source": [
10+
"import numpy as np\n",
11+
"import qiskit\n",
12+
"from qiskit import QuantumCircuit\n",
13+
"from qiskit.quantum_info import partial_trace"
14+
]
15+
},
16+
{
17+
"cell_type": "code",
18+
"execution_count": 2,
19+
"id": "ff3c6d13",
20+
"metadata": {},
21+
"outputs": [],
22+
"source": [
23+
"from qiskit.quantum_info import DensityMatrix, Statevector\n",
24+
"\n",
25+
"def getDensityMatrix(circuit):\n",
26+
" return DensityMatrix(circuit).data\n",
27+
"\n",
28+
"def getStatevector(circuit):\n",
29+
" return Statevector(circuit).data"
30+
]
31+
},
32+
{
33+
"cell_type": "code",
34+
"execution_count": 36,
35+
"id": "0952d3b7",
36+
"metadata": {},
37+
"outputs": [],
38+
"source": [
39+
"from functools import reduce\n",
40+
"\n",
41+
"Dag = lambda matrix: matrix.conj().T\n",
42+
"Kron = lambda *matrices: reduce(np.kron, matrices)"
43+
]
44+
},
45+
{
46+
"cell_type": "markdown",
47+
"id": "b189f0b1",
48+
"metadata": {},
49+
"source": [
50+
"# 1. Circuit simulation"
51+
]
52+
},
53+
{
54+
"cell_type": "code",
55+
"execution_count": 34,
56+
"id": "e523b016",
57+
"metadata": {},
58+
"outputs": [
59+
{
60+
"data": {
61+
"text/plain": [
62+
"<qiskit.circuit.instructionset.InstructionSet at 0x26cefcf43a0>"
63+
]
64+
},
65+
"execution_count": 34,
66+
"metadata": {},
67+
"output_type": "execute_result"
68+
}
69+
],
70+
"source": [
71+
"circuit = QuantumCircuit(2)\n",
72+
"\n",
73+
"circuit.h(0)\n",
74+
"circuit.h(1)\n",
75+
"\n",
76+
"circuit.ry(0.3 * np.pi/2, 0)\n",
77+
"circuit.ry(0.4 * np.pi/2, 1)\n",
78+
"\n",
79+
"circuit.cx(0, 1)"
80+
]
81+
},
82+
{
83+
"cell_type": "code",
84+
"execution_count": 35,
85+
"id": "8c6b506f",
86+
"metadata": {},
87+
"outputs": [
88+
{
89+
"data": {
90+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATEAAACuCAYAAABeIjpKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAWmUlEQVR4nO3de1gV953H8fcBUVBAREhQUdEAAVEwXki8tA0GNzFoNzEl6qpJujZu2hpNYyS7zdMm6SUJ0dYn1jbqk+5amy7LbkyyUber2RCr1VwwaLRiFImoXE70CIgiyuXM/nEqkQoRdM5lDp/X85wHmfnNzJfD4ePMb34zYzMMw0BExKICvF2AiMiNUIiJiKUpxETE0hRiImJpCjERsTSFmIhYmkJMRCxNISYilqYQExFLU4iJiKUpxETE0hRiImJpCjERsTSFmIhYmkJMRCxNISYilqYQExFLU4iJiKUpxETE0hRiImJpCjERsTSFmIhYmkJMRCxNISYilqYQExFLU4iJiKUpxETE0hRiImJpCjERsTSFmIhYmkJMRCxNISYilqYQExFLU4iJiKUpxETE0hRiImJpCjERsbQe3i5ArmYY0Nji7Sq6pmcg2Gzmrc8wwNlk3vo8ISDI3PdAOkch5oMaW+DpfG9X0TW5s6CXiZ8mZxO8v8q89XlCxmII7OntKrofHU6KiKUpxETE0hRiImJpCjERsTSFmIhYmkJMRCxNISYilqZxYuJXPi3dzlNrMtpMC+7Zh9joRDLHzOe+SY8TGKiPvT/Rb1P8UsboOaQn3YuBQc05O+9+soE1m57kxKlD/OBb67xdnphIISZ+KWHQGDLHzmv9fsbE77Hg5ST++PFrfPuenxMRGu3F6sRM6hOTbiGkZx+Sht6BYRhUnin1djliIoWYdBtVfw2v8N6RXq5EzKTDSfFLF5sucLbegWG4+sQ2fbCGoxV7SRqcTmx0orfLExP5/Z6Yw+EgJyeH+Ph4goODGTx4MEuWLKG+vp4FCxZgs9lYvXq1t8sUk23Y9izfei6a7OdvYuEvU9n0wW+YPHImzz/y394uzWu+OAsHK+Av5XDiDDgNb1dkDr/eE9u3bx/Tpk3DbrfTp08fRowYQWVlJatWraK0tJTq6moARo8e7d1C3aS8eDsbX8hg8pzljM16qt02r8yzETc6i79/arOHq3OvrNsX8vXUbJqdTRyrOkD+9lwcZ8vpGRTc2ubnr8/GaTj50fz/bJ1Wd6GaR1eksHD6Cu4aM9cbpZvK6YS9x+HPJXDsdNt50WEwKQHuiIfgIO/UZwa/3RNzOBzMmDEDu93O0qVLqaqqoqioCLvdTm5uLlu2bKGwsBCbzUZqaqq3yxWTDYpKYExiJulJ05iVkcNPv72Jw+WFvLLxsdY2j8/8DQfLdlGwN6912q/e+j4pwyb7RYA1tcD6P8Pvd18dYACnz8HbRbBqG9Re8Hx9ZvHbEFu8eDHl5eUsWrSIFStWEBYW1jovJyeHtLQ0mpubiYuLIzw83IuViiekxE0kc8x8tn+az8Gy3YCrg39p9m9Z/fYiHGcr2bH/DfaXbueJmWu8XO2Ncxrw+m7Yf/LabStrYU0BXGh0e1lu4ZchdujQIfLz84mKiuLFF19st83YsWMBSEtLazP92LFjfPOb3yQsLIx+/frx0EMPcebMGbfXLO43N/NHBAQE8rutP26dNj7pHr6R+iC5efP41Zvf48ns1wjv09+LVZrjs0r49ETn29vPwo7P3FePO/lliOXl5eF0Opk7dy6hoaHttgkJCQHahti5c+fIyMigvLycvLw81q1bx86dO5k+fTpOp9MjtbtDc+MFGs452n11J4Oi4slIm83eo+9x4POdrdMXzlhBxZmjjE+axu3JWV6s0Dy7Srq+zAdHocWCH3O/7NgvKCgAICMjo8M25eXlQNsQW7duHRUVFezYsYMhQ4YAEBsby8SJE3nnnXe477773Fe0G3248Vk+3Pist8vwCXPueob39+Xxu20/ZsVj7wOugbADIoczLGaUl6szx7mLUFzR9eXONsAROyQPNL8md/LLEDt+/DgAQ4cObXd+c3Mzu3btAtqG2ObNm5k8eXJrgAFMmDCB4cOHs2nTpusOsXHjxmG32zvdPjAohPt/dh3/lXZgZMZCEm7PbnfeWy9NNWUbiQkJtDQ1mLIugJ49Qli3qOvvQdotd/Lu8o7HDgy9OZmtL7vnUVIJiQk0Npv3HlyvvgNGMPWJbde17MJFORz7+N9NrujaYmJi2LNnz3Ut65chVl9fD0BDQ/sfqPz8fBwOB2FhYQwbNqx1enFxMdnZV/+xp6SkUFxcfN312O12Kio6/19jj169r3tb7YmISWDIyExT1/m3Kqsqab5k3imu4CBz3wNPqKqs5GKT90/zXQq8/j69mprqLn1WfYFfhlhMTAw1NTUUFRUxYcKENvOqqqpYtmwZAKmpqdiueFBgTU0NERERV60vMjKSw4cP31A9XREYFHLd2/KWgQMGmr4nZjUDBg70iT2xnsEGhrMFW0Bgl5ftZWtg0KBBbqjqq3X1b+RKfhlimZmZHDp0iNzcXKZOnUpiousyk8LCQubPn4/D4erQ9tQg167uJl9qtt5zJ4+UlJj63MmWRs8+d/IX391+w+soOVLiM8+dfO1PrpH5XdE3BD7+vz8QaLHTfRYrt3NycnLo378/J0+eJCUlhVGjRpGQkEB6ejrDhw9nypQpwNXDK/r160dtbe1V66uuriYyUhcNi3VMSuj6MhMTsFyAgZ+GWGxsLDt37iQrK4vg4GDKysqIjIxk7dq1bNmyhSNHjgBXh1hycnK7fV/FxcUkJyd7pHYRM9w6AG5r/7xWuwZGwDeS3FaOW/nl4SS4Amnz5quvBzx//jxlZWUEBAQwcuTINvOmT5/OD3/4Q8rLy4mNjQXgo48+orS0lOXLl3ukbhEzBNhg7gQwDNh3jUGvsf3g0QzrXj9pMwzDT65l75yPPvqIO+64g1tvvZXPPms7RLmuro5Ro0YRFRXF888/z8WLF8nJySE6OpoPPviAgADP7LhasU8sdxaW7hMzQ8ZifKZP7DKnAftPuC4AP/pF23kxfV2Hnem3mPu78zQLl359Dhw4AFx9KAkQHh5OQUEBS5YsYfbs2fTo0YPp06ezcuVKjwWYiJkCbDB6qOt1ug5WbnVdIxnaC57OgitOzluWQuxv3HLLLe0ehorvKT9dwvL8hzlb76BPcF+WzVpPXExKu20NwyBn7V2UVBTx9k9rASg8vJXXtjzd2qa2/hSRYTG8+kQRAD/Z8C0OHt9NdV0Vb/2khtCQCHf/SG4VHQ5Bfx11ERjgHwEGftqx/1WuFWJiHa9s/CfuvX0h658+wqyMp1me/0iHbTfuWMmA/re0mTb+1rtZ++S+1lfCoDFMue3LW/BMv+Mx1vxgn5uqF7N0uxArKCjAMAyysvzjQt/uqub8KY6U7yFzjOuJRl8b9QCna09S4Th6Vdsy+0F2H3yb2Rn/3OH6HGcr2VvyHplj57dOG5OYSb/Qm8wvXkzV7UJM/MPp2pNEhg9ofRCuzWbjpn5DOFXb9lRcc0sTK994lCUPrCXgK0awb9uznvSkexVaFqQQE7/2+3efZ/LImQy9ueNxfoZhsLXwX7knfYEHKxOzdLuOffEP0RGDqa6roqWlmcDAHhiGwamaE9wUMaRNu/2f/4lTNSf4792raXE2c+FSHfNeiGP14sLWB+ju//xPNDZfZNytd3vjR5EbpBATS+oXehPxg8bwf0Wvc/f4R9h5YCNREbEMiopv027l9768+aG9uozHVo7m9R+WtWnzx49/y9+Ne4TA67hgWrxPh5NiWU88sJYtH67lkdxE/uP9l1j24L8B8Iv/+g67D77TqXXUN5xl14E3uWf8P14175nfZjHnZ64rN76zIoWlr95pWu1inm43Yt8KNGJfI/bd5dk3XXdw7RsCz8/0djXm0J6YiFiaQkxELE0hJiKWphATEUtTiImIpWmcmA/qGeg622clPU0eYhUQ5DrbZyUBFr2poNUpxHyQzWbtm9SZwWbz/eEK4ht0OCkilqYQExFLU4iJiKUpxETE0hRiImJpCjERsTSFmIhYmkJMRCxNISYilqYQExFLU4iJiKUpxETE0hRiImJpCjERsTSFmIhYmkJMRCxNISYiltbN7x/qmwwDGlu8XUXX9Ax03Y3VLIYBzibz1ucJAUHmvgfSOQoxH9TYoieAO5v0BHDpHB1OioilKcRExNIUYiJiaQoxEbE0hZiIWJrOTor4scZmqKyF8mqorIELja7pFxqhoBhiI12v3hY+q6oQE/FDJ8/AziOw9zg0tTPmsKkF3tnr+rcNSB4IkxMhaSAEWGysm0JMxI+cqoP8j6D0VOeXMYDiStcrOgweTIeEGLeVaDqFmPiVT0u389SajDbTgnv2ITY6kcwx87lv0uMEBvrfx95pwI7PYMun7e95ddbpc/Dr92BSAnzzNugVZF6N7uJ/v00RIGP0HNKT7sXAoOacnXc/2cCaTU9y4tQhfvCtdd4uz1QtTnh9t+vQ0Sy7SuD4GXgsA0KDzVuvO+jspPilhEFjyBw7j6lj5/PgnctY9fiHRPeN5Y8fv0bt+dPeLs80Tif8fpe5AXZZebVrr+zCJfPXbSaFmHQLIT37kDT0DgzDoPJMqbfLMc3/7Id9J9y3/qpaWP9n1wX5vkqHk9JtVP01vMJ7R3q5EnOUOeC94q4t8+Q9EB4CdQ3wy//t3DJH7LC7BCYldr1GT+gWe2IOh4OcnBzi4+MJDg5m8ODBLFmyhPr6ehYsWIDNZmP16tXeLlNMdLHpAmfrHdSeP82xqgOsevP7HK3YS9LgdGKjffSvsQuaWyDvg67vIYWHQERv19eueGcvVJ/v2jKe4vd7Yvv27WPatGnY7Xb69OnDiBEjqKysZNWqVZSWllJdXQ3A6NGjvVuoG5QXb2fjCxlMnrOcsVlPtdvmlXk24kZn8fdPbfZwde61YduzbNj2bJtpk0fO5PH7f+2lisy17wR8Uee57V1qhu2fwcxxnttmZ/n1npjD4WDGjBnY7XaWLl1KVVUVRUVF2O12cnNz2bJlC4WFhdhsNlJTU71drpgo6/aF5D76Lj9f8D98595cwnpH4jhbTs+gL0+1/fz12fz09w+2Wa7uQjWzfjKA94r+4OmSu2TXEc9v8+PPXWHma/w6xBYvXkx5eTmLFi1ixYoVhIWFtc7LyckhLS2N5uZm4uLiCA8P92KlYrZBUQmMScwkPWkaszJy+Om3N3G4vJBXNj7W2ubxmb/hYNkuCvbmtU771VvfJ2XYZO4aM9cbZXdKZQ0cc3h+uxebYG+Z57d7LX4bYocOHSI/P5+oqChefPHFdtuMHTsWgLS0tNZpl0MvPT2dXr16YdP9hv1CStxEMsfMZ/un+Rws2w24OviXZv+W1W8vwnG2kh3732B/6XaemLnGy9V+tZIvvLfto17cdkf8NsTy8vJwOp3MnTuX0NDQdtuEhLh6N68MsaNHj7Jx40ZiYmIYP368R2p1t+bGCzScc7T76k7mZv6IgIBAfrf1x63TxifdwzdSHyQ3bx6/evN7PJn9GuF9+nuxymsrr/betk96cdsd8duO/YKCAgAyMjI6bFNeXg60DbGvf/3rVFVVAfDcc8+xa9cuN1bpGR9ufJYPNz577YZ+blBUPBlps3lv7x848PlORg3/GgALZ6xgwfJkxidN4/bkLC9XeW3lNd7b9qk6V7+Ymc9TuFE+VIq5jh93DWEeOnRou/Obm5tbA+rKEAsIMH/ndNy4cdjt9k63DwwK4f6flZi2/ZEZC0m4PbvdeW+9NNWUbSQmJNDS1GDKugB69ghh3SLz3oPL5tz1DO/vy+N3237MisfeB1wDYQdEDmdYzKgbWndCYgKNzea9Bx3JeuYTQsJvbnfe5XFgHQkP/vLrc/d33K6jcWQGMDJtPA1nqzpfcCfExMSwZ8+e61rWb0Osvr4egIaG9j9U+fn5OBwOwsLCGDZsmFtrsdvtVFRUdLp9j169Td1+REwCQ0ZmmrrOv1VZVUnzpQumrS846Preg7Rb7uTd5R0Pnhp6czJbX3bP8/CqKiu52GTee9AhW2CHsy6PA7uWgIDOtWvPqdNnqDvd+c+zu/ltiMXExFBTU0NRURETJkxoM6+qqoply5YBkJqa6vbO+5iYrt3XJDCoiyMRfcDAAQNN3xOzmgEDB3pkTwxnx+Mc6q6x+fBgV4A5nVB3seN2X7We6KhIwno2XqPIrunq38iV/DbEMjMzOXToELm5uUydOpXERNco7cLCQubPn4/D4erU9sQg167uJl9qtt5zJ4+UlJjaT9LSaL3nTpYcKfHIcydXboXjHZyTudalRM/d79oDq7sIz73V9W33CIDDf9lDoA+dEvShUsyVk5ND//79OXnyJCkpKYwaNYqEhATS09MZPnw4U6ZMAdr2h0n39Yvvbif7zvavavA1g7146efAfvhUgIEfh1hsbCw7d+4kKyuL4OBgysrKiIyMZO3atWzZsoUjR1xDnhViYjXeDDFvbrsjfns4CZCcnMzmzVdfE3j+/HnKysoICAhg5MiRXqhM5Ppdvg++0wu3x0kZ5PltXotfh1hHDh48iGEYJCYm0rv31ado3njjDQCKi4vbfB8XF8e4cT54BWwHYkfcyZLXv/qTfq354nv6hkDqYPfeR6w9/UNdAeprumWIHThwAOj4UDI7O7vd7x9++GHWr1/v1tpEOmNSoudDbGK8bz4JSSHWDsOXb2MpAsTf5Dq0O+ih4VpRoTD5Vs9sq6sUYtLt7Nj/BntL3mPJA68y74U4gnr0ah2XNmfKv3Dn6FlervDabDZ48HZ4aTM0mDtkq11z7vCtS42u5KNludfl6yqle9r1l7fIHPtQ6/fPzM0nftBo7xV0nfqGQPZ42NCFy3svD2K91qDYK2Ukwy3tX+XkE7pliIl/O99Qy6O/GMmlpgai+w6mqeUS9jOfc9fY+SyZ+SoHy3axbNZ6b5dpijFxcO4ivPVJ59p39r76l40bBjNu63JZHqUQE78TGhLBlNH/QEivMOZN/RGFh7eSV/ACS7NfY8/hbYwYOpEegV8+Ffbl/3gIA4OkweksuPclIkKjvVh9130jCXoEwsZCc4ddTEqAB8b5Zmf+lfx2sKt0b0cr9xE/yLULUVL+CfEDXf/effBtJo388vYNv/zuDtYt3c+rTxQR3ieKl/Mf9kq9N2pSAjxxNwzoe+PrCu0F3/4aZKe7rrP0dRYoUaTrPv/bEBt0G4ZhsOfwVtKTprW2u6nfEAB6BAYx82tP8JdjO71SrxmG9Iel02BaqiuIuiooECbEwz9Ph7Qh5tfnLjqcFL/jOFsBNhtRfV3Dyz+37+cf7nqGz05+zJCbkwnp5brTb0NjPS0tTYSGRADw/t681j02q+oRCHePgrtGwKcn4MNSOHGm4wd8BAbAwAgYGwfpw6H3dYSftynExO8crdjbJoxCgyN454Pf0LdPFBNT7mudXnvuC57f8ABOZwsGBgMih5Mze4MXKjZfj0AYO8z1chpwug4qa+FSk+vGhkGBcHM4DIhwtbUym6GRnT7HirfiyZ1l7jgid9yK5zsrUlj+2Pv0C73J3BX/VcZiPHIrHmlLe2LSbbz21EFvlyBuoI59EbE0hZiIWJpCTEQsTR37PsgwoNE9D+Rxm56BrouSzWIY4Gwyb32eEBBk7nsgnaMQExFL0+GkiFiaQkxELE0hJiKWphATEUtTiImIpSnERMTSFGIiYmkKMRGxNIWYiFiaQkxELE0hJiKWphATEUtTiImIpSnERMTSFGIiYmkKMRGxNIWYiFiaQkxELE0hJiKWphATEUtTiImIpSnERMTSFGIiYmkKMRGxNIWYiFja/wMqn6dy12P03QAAAABJRU5ErkJggg==\n",
91+
"text/plain": [
92+
"<Figure size 370.906x200.667 with 1 Axes>"
93+
]
94+
},
95+
"execution_count": 35,
96+
"metadata": {},
97+
"output_type": "execute_result"
98+
}
99+
],
100+
"source": [
101+
"circuit.draw(output='mpl')"
102+
]
103+
},
104+
{
105+
"cell_type": "code",
106+
"execution_count": 9,
107+
"id": "666ac62d",
108+
"metadata": {},
109+
"outputs": [],
110+
"source": [
111+
"Z = np.matrix([[1,0],[0,-1]])"
112+
]
113+
},
114+
{
115+
"cell_type": "code",
116+
"execution_count": 37,
117+
"id": "6e89711e",
118+
"metadata": {},
119+
"outputs": [
120+
{
121+
"data": {
122+
"text/plain": [
123+
"array([[0.05626829+0.j, 0.18020986+0.j, 0.11043274+0.j, 0.09182151+0.j],\n",
124+
" [0.18020986+0.j, 0.57715617+0.j, 0.35368175+0.j, 0.29407576+0.j],\n",
125+
" [0.11043274+0.j, 0.35368175+0.j, 0.21673646+0.j, 0.18020986+0.j],\n",
126+
" [0.09182151+0.j, 0.29407576+0.j, 0.18020986+0.j, 0.14983908+0.j]])"
127+
]
128+
},
129+
"execution_count": 37,
130+
"metadata": {},
131+
"output_type": "execute_result"
132+
}
133+
],
134+
"source": [
135+
"matrix = getDensityMatrix(circuit)\n",
136+
"matrix"
137+
]
138+
},
139+
{
140+
"cell_type": "code",
141+
"execution_count": 30,
142+
"id": "8192cd76",
143+
"metadata": {},
144+
"outputs": [],
145+
"source": [
146+
"q0_state = partial_trace(matrix, [1])"
147+
]
148+
},
149+
{
150+
"cell_type": "code",
151+
"execution_count": 31,
152+
"id": "f5bbc439",
153+
"metadata": {},
154+
"outputs": [
155+
{
156+
"data": {
157+
"text/plain": [
158+
"(-0.4539904997395462+0j)"
159+
]
160+
},
161+
"execution_count": 31,
162+
"metadata": {},
163+
"output_type": "execute_result"
164+
}
165+
],
166+
"source": [
167+
"np.trace(Dag(q0_state.data) @ Z @ q0_state.data)"
168+
]
169+
},
170+
{
171+
"cell_type": "code",
172+
"execution_count": 32,
173+
"id": "e2b9e399",
174+
"metadata": {},
175+
"outputs": [],
176+
"source": [
177+
"q1_state = partial_trace(matrix, [0])"
178+
]
179+
},
180+
{
181+
"cell_type": "code",
182+
"execution_count": 33,
183+
"id": "b77abe57",
184+
"metadata": {},
185+
"outputs": [
186+
{
187+
"data": {
188+
"text/plain": [
189+
"(0.2668489204277951+0j)"
190+
]
191+
},
192+
"execution_count": 33,
193+
"metadata": {},
194+
"output_type": "execute_result"
195+
}
196+
],
197+
"source": [
198+
"np.trace(Dag(q1_state.data) @ Z @ q1_state.data)"
199+
]
200+
},
201+
{
202+
"cell_type": "markdown",
203+
"id": "f0ccc434",
204+
"metadata": {},
205+
"source": [
206+
"# 2. matrix computaion"
207+
]
208+
},
209+
{
210+
"cell_type": "code",
211+
"execution_count": null,
212+
"id": "f90bb2d1",
213+
"metadata": {},
214+
"outputs": [],
215+
"source": []
216+
}
217+
],
218+
"metadata": {
219+
"kernelspec": {
220+
"display_name": "Python 3 (ipykernel)",
221+
"language": "python",
222+
"name": "python3"
223+
},
224+
"language_info": {
225+
"codemirror_mode": {
226+
"name": "ipython",
227+
"version": 3
228+
},
229+
"file_extension": ".py",
230+
"mimetype": "text/x-python",
231+
"name": "python",
232+
"nbconvert_exporter": "python",
233+
"pygments_lexer": "ipython3",
234+
"version": "3.9.13"
235+
}
236+
},
237+
"nbformat": 4,
238+
"nbformat_minor": 5
239+
}

.ipynb_checkpoints/measurement-qpanda-checkpoint.ipynb

+1,960
Large diffs are not rendered by default.

0 commit comments

Comments
 (0)