-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_clustering.py
84 lines (72 loc) · 2.11 KB
/
data_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# -*- coding: utf-8 -*-
"""
Integrates the K-Means Algorithm of Data clustering
@author: Ujjaini
"""
import pandas as pd
import matplotlib.pyplot as plt
from pandas import DataFrame
from oct2py import Oct2Py
oc = Oct2Py()
def find_closest_centroids(X, centroids):
print("A")
K = oc.size(centroids, 1)
print("B")
idx = oc.zeros(oc.size(X, 1), 1)
print("C")
m = oc.size(X,1)
print("D")
for i in range(int(m)):
min_dist = 1000000000
for j in range(int(K)):
vector = X.iloc[i,:] - centroids.iloc[j,:]
dist = oc.sum(vector^2)
if dist < min_dist:
idx[i] = j
min_dist = dist
print("**********")
print(str(i) + " " + str(j))
print(i*j)
return idx
def compute_centroids(X, idx, K):
print(oc.size(X))
m = oc.size(X,1)
n = oc.size(X,2)
centroids = oc.zeros(K, n)
ck = oc.zeros(K, 1)
for i in range(K):
for j in range(int(m)):
if(idx[j, 1] == i):
centroids[i,:] = centroids[i,:] + X[j,:]
ck[i] = ck[i] + 1
centroids[i,:] = centroids[i,:]/ck[i]
return centroids
def init_centroids(X, K):
centroids = oc.zeros(K, oc.size(X, 2))
randidx = oc.randperm(oc.size(X, 1))
print(centroids)
print(len(randidx[0]))
centroids = X.iloc[randidx[0][0:K], :]
return centroids
data = pd.read_csv("2019data.csv")
data = data.drop("delete", axis = 1)
data = data.drop("dq", axis = 1)
data = data.drop("matches_played", axis = 1)
data = data.drop("rank", axis = 1)
data = data.drop("team_key", axis = 1)
data = data.drop("losses", axis = 1)
data = data.drop("wins", axis = 1)
data = data.drop("ties", axis = 1)
data = data.drop("ranking_score", axis = 1)
data = data.drop("ranking_points", axis = 1)
data = data.drop("qual_average", axis = 1)
data = data.iloc[0:1000,:]
print(data)
centroids = init_centroids(data, 4)
print(centroids)
for i in range(10):
print(i)
idx = find_closest_centroids(data, centroids)
print(idx)
centroids = compute_centroids(data, idx, 4)
print(centroids)