Skip to content

Commit e80aed4

Browse files
committed
pdf updates
1 parent f9d48a6 commit e80aed4

File tree

4 files changed

+6
-10
lines changed

4 files changed

+6
-10
lines changed

vignettes/test_procedures.Rmd

+1-3
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,6 @@
11
---
22
title: "Testing Protocol Companion to textNet Vignette"
3-
author:
4-
- name: Elise Zufall
5-
- name: Tyler Scott
3+
author: Elise Zufall and Tyler Scott
64
date: 7 November 2024
75
output: pdf_document
86
---

vignettes/test_procedures.pdf

2.23 MB
Binary file not shown.

vignettes/textNet_vignette_2024.Rmd

+5-7
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,6 @@
11
---
22
title: "textNet: Directed, Multiplex, Multimodal Event Network Extraction from Textual Data"
3-
authors:
4-
- name: Elise Zufall
5-
- name: Tyler Scott
3+
author: Elise Zufall and Tyler Scott
64
date: 7 November 2024
75
bibliography: paper.bib
86
output: pdf_document
@@ -74,7 +72,7 @@ The following example uses parsed text from the Gravelly Ford Water District Gro
7472
### Extract Networks
7573
First, we read in the pre-processed data and call textnet_extract() to produce the network object:
7674

77-
```{r readpreprocessed}
75+
```{r readpreprocessed, message=F, warning=F}
7876
library(textNet)
7977
old_new_parsed <- textNet::old_new_parsed
8078
@@ -193,7 +191,7 @@ A tool that generates an igraph or network object from the textnet_extract outpu
193191
```
194192
The *ggraph* package [@pedersen_ggraph_2024] has been used to create the two network visualizations seen here, using a weighted version of the igraphs constructed below. We set collapse_edges = T to convert the multiplex graph into its weighted equivalent.
195193

196-
```{r plot}
194+
```{r plot, message=F, warning=F}
197195
library(ggraph)
198196
old_extract_plot <- export_to_network(old_extract_clean, "igraph", keep_isolates = F,
199197
collapse_edges = T, self_loops = T)[[1]]
@@ -370,7 +368,7 @@ The 2x2 table below summarizes the rate at which each entity type is found in bo
370368

371369
We can also investigate differences in network statistics between the two plans. For instance, the distribution of degree does not change much between plan versions. The distribution of betweenness, likewise, is relatively stable except for person nodes, which are the least common nodes in the graph.
372370

373-
```{r step8b4}
371+
```{r step8b4, warning=F, message=F}
374372
library(gridExtra)
375373
library(ggplot2)
376374
b1 <- ggplot(old_node_df, aes(x = entity_type, y = deg)) + geom_boxplot() +
@@ -436,7 +434,7 @@ This is a wrapper for pdftools, which has the option of using pdf_text or OCR. W
436434
pdfs <- c("vignettes/old.pdf",
437435
"vignettes/new.pdf")
438436
439-
old_new_text <- textNet::pdf_clean(pdfs, keep_pages=T, ocr=F, maxchar=10000,
437+
old_new_text <- textNet::pdf_clean(pdfs, ocr=F, maxchar=10000,
440438
export_paths=NULL, return_to_memory=T, suppressWarn = F,
441439
auto_headfoot_remove = T)
442440
names(old_new_text) <- c("old","new")

vignettes/textNet_vignette_2024.pdf

4.44 MB
Binary file not shown.

0 commit comments

Comments
 (0)