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Abstract
Chicken Bonds are a novel mechanism for DAOs/projects to bootstrap protocol owned liquidity (POL)
at no cost while boosting yield opportunities for their end users. The yield amplification is achieved
by directing additional yield from POL and users bonding underlying tokens (TKN) to newly issued
“boosted” tokens (bTKN).

Acting as an autonomous self-bootstrapping treasury, the protocol is powered by an innovative
bonding mechanism: users may deposit TKN in exchange for an accruing balance of bTKN. At any
time, bond holders can either retrieve their principal foregoing the accrued amount (“chicken out”)
or trade it in for the accrued bTKN (“chicken in”).

The TKN acquired by the system backs the bTKN supply: while a portion of the TKN in the
treasury is directly redeemable by bTKN holders, another portion is contributing permanently to the
redeemable value through its yield. Along with the yield retained from pending bonds, the bTKN
benefits from a rapidly rising price floor, making it an attractive investment.

Chicken Bonds are versatile and can be used by protocols to obtain DEX liquidity or to pursue
sophisticated liquidity management strategies including algorithmic market operators (AMOs). An
interesting use case involves bonding LP tokens.
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1 Introduction
DeFi summer 2020 has led to an abundance of DeFi projects, making it increasingly competitive
to maintain liquid markets for new protocol tokens. Many projects have faced excessive costs of
obtaining liquidity from providers looking for the best short-term yield farming opportunities. Such
capital lacks stickiness and moves on as higher-yield options become available. Protocols are thus
only renting temporary liquidity from users at high costs.

More recently, DeFi 2.0 protocols such as Olympus Pro, Ondo and Tokemak have started offering
alternative ways to acquire liquidity, which are more similar to leasing or buying. While tackling the
issue of stickiness, they are still costly and may not be affordable for all projects.

Chicken Bonds is a major innovation in liquidity acquisition technology and works with any
underlying token (TKN) that can be used to earn yield, e.g. in a DEX, a lending protocol or through
native staking.

The system offers strong benefits to DeFi protocols and bond holders, while minimizing risk:

• Cost-free liquidity accumulation for projects. Rather than purchasing or renting liquidity, the
system freely acquires treasury assets over time in a self-bootstrapping manner. Liquidity
acquisition is incentivized by the amplified yields that are attainable by bond holders, enabled
by the novel bonding dynamics.

• Risk-free and flexible bonding for users. Bond holders may “chicken out” and withdraw their
deposited principal at any time, in lieu of converting it to “boosted” tokens (bTKN). Therefore
bonding is fully reversible and bond holders are not locked into any commitment to the protocol.
Furthermore, bonds are represented as NFTs and can thus be sold on the secondary market,
which can be attractive for bonds that have accumulated a significant amount of bTKN.

• System stability and resilience. The Chicken Bonds derivative token bTKN has a hard price
floor supported by a direct redemption mechanism. Most of the time, bTKN will in fact trade
at a premium above this price floor due to amplified (“boosted”) yield earned by the underlying
liquidity. Though the premium may vary, the bonding rules guarantee that the price floor can
only increase over time. As such, the Chicken Bonds boosted token does not suffer from the high
volatility and strong reflexivity inherent to secondary tokens issued by other bonding protocols.

We now proceed to describe the core Chicken Bonds mechanism which enables the risk-free am-
plified yield and liquidity acquisition. Based on this mechanism, a liquidity-bootstrapping product
will be released as a permissionless protocol for DAOs and projects to use.

2 Treasury
The protocol operates a Treasury R consisting of three logical parts (“buckets”): Pending Bucket,
Reserve Bucket and Permanent Bucket.

Each bucket contains a certain quantity of TKN or other assets whose value can be readily
expressed in TKN. We suppose that the assets in the buckets can be invested in a third-party protocol
(e.g. staked natively or deposited to a DEX) to generate yield while being withdrawable at any time.

The current state of the Treasury can thus be described by the following tuple:

R := (qp, qr, qd, rp, rr, rd) (1)
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where qp, qr and qd stand for the quantities held by the respective buckets, and rp, rr, rd for
their rates of return. Note that the buckets as logical quantities do not need to correspond to the
physical investment vehicles. A bucket may invest its funds to multiple investment vehicles, and
several buckets may use the same venue earning the same rate of return.

The buckets are used as follows:

• Pending Bucket. Contains the TKN bonded by users that are still active bond holders, i.e.
whose deposits haven’t been acquired by the protocol yet. Since bond holders may withdraw
their bonded TKN at will (see 3.1.1 “chicken out“), their deposits are considered as pending.
The yield earned by the Pending Bucket is credited to the Reserve Bucket.

• Reserve Bucket. Contains a portion of the TKN relinquished by former bond holders after a
”chicken in” event (see 3.1.2) as well as the yield of the Pending and the Permanent Buckets.
The Reserve Bucket directly backs the bTKN supply through the redemption mechanism (see
3.2).

• Permanent Bucket. Contains the other portion of the TKN relinquished by former bond holders.
The yield earned by the Permanent Bucket is credited to the Reserve Bucket.

Having a Permanent Bucket may turn out as unnecessary or even detrimental for some use cases.
As an alternative, the protocol can thus be set up without a Permanent Bucket (see 5.2).

2.1 Yield Amplification and Reinvestment
Given that the Reserve Bucket earns a return not only on its own assets, but additionally receives
the returns from the Pending and the Permanent Buckets, it achieves an amplified return r⋆

r > rr on
the amount qr. We call this useful property yield amplification.

As the protocol doesn’t distribute any yields, but reinvests them inside the Reserve Bucket, the
value of the Reserve Bucket will grow over time even without the inflow of new capital. Due to the
yield amplification, the Reserve Bucket grows faster than if the same funds were invested regularly
with a (compounding) rate of return rr.

2.2 Reserve Bucket backing the Boosted Token
The protocol maintains a supply S of a Boosted Token (bTKN) according to preset rules for minting
and burning. The bTKN supply is directly backed by the Reserve Bucket, i.e. it can be redeemed
against a pro rata share of the assets (usually TKN) held therein (see 3.1.1).

We call the amount of TKN for which each bTKN can be redeemed for the redemption price
pr. The redemption price corresponds to the backing ratio and is defined as qr

S . It is subject to the
following invariant:

Invariant (Redemption price never decreases). The protocol ensures that the redemption price pr

(backing ratio) can only ever increase, but never decrease.

3 User interactions
Users can interact with the protocol in the followings ways:

• Bonding. Users can bond TKN in order to earn bTKN.

• Redemption. Users can redeem bTKN for TKN.

3.1 Bonding
Bonding is the main use case that allows the system to build up its treasury by incentivizing users
through the issuance of a Boosted Token, the bTKN.

Users can bond any amount b of TKN at any time in exchange for a position called Chicken Bond,
represented by an NFT. The bonded TKN is added to the Pending Bucket where it earns a yield for
the system’s Treasury.
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A Chicken Bond accrues a virtual balance s(t) of bTKN over time, according to a curve that
asymptotically approaches a ”cap” ensuring the invariant of a never decreasing redemption price.

The protocol may exclude a portion of the bonded amount from accruing bTKN, and divert it as
an incentive to LPs of a bTKN/TKN exchange pair when the user opts to chicken in (see 3.1.2). We
therefore call this portion the chicken-in fee (see 5.5).

The accrual curve can be of the form

s(t) := b

pr
· t

t + α
(2)

α parametrizes the slope of the curve and could be automatically adjusted by the protocol in
order to control the speed of the value accrual which depends on the evolving price premium (see
5.3).

We call the fraction b
pr

the cap c which corresponds to the amount of bTKN that could be minted
by the protocol such that the redemption price would be kept constant if b was entirely added to the
Reserve Bucket. Therefore, the ratio between the cap and the bond corresponds to the ratio between
the bTKN supply and the Reserve Bucket. Thus, we have

c

b
= S

qr
(3)

The owner of a Chicken Bond can exit their position any time by choosing either of the following
options:

• Chicken out. Retrieve the principal foregoing the accrued bTKN.

• Chicken in. Obtain the accrued bTKN foregoing the bonded TKN.

In both cases, the Chicken Bond NFT is burned as the bond holder’s position is closed. Depending
on the option chosen, the bonded TKN is either fully paid back to the user or it transitions from the
Pending Bucket to the Reserve Bucket and the Permanent Bucket according to a split calculated by
the system (3.1.2).
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3.1.1 Chicken out

By chickening out, the bond holder gets the entire bonded TKN back, foregoing the accrued balance
of bTKN (which doesn’t get minted). The option to withdraw the principal at any time makes
bonding an essentially risk-free investment where the user only incurs the opportunity costs besides
smart contract risks.

Upon a chicken out event at time ti+1 (where the previous event in the system occurred at time
ti), the Treasury changes as follows:

qp(ti+1) := qp(ti) − b (4)

As an alternative, the bond holder may sell their NFT on the secondary market, likely receiving
a better return. The buyer of the NFT has the same rights against the protocol as the original bond
holder.

3.1.2 Chicken in

A user that chickens in loses the bonded TKN in exchange for the accrued balance of bTKN that is
minted and paid out by the protocol.

Instead of keeping the received bTKN, the user may sell it on the open market and opt to reinvest
the proceeds by creating a new, typically larger bond (aka “rebonding”, see below).

Upon a chicken in, the protocol acquires the bonded TKN which is moved from the Pending
Bucket to the Reserve Bucket and the Permanent Bucket. To that end, the bonded amount b is first
split into two amounts br and bd in proportion to the ratio of the currently accrued bTKN s to the
cap c:

br = s

c
· b = s · pr (5)

bd = c − s

c
· b = b − s · pr (6)

The two amounts are then added to the Reserve and the Permanent Bucket, so that the Treasury
transitions to the following state:

qr(ti+1) := qr(ti) + br = qr(ti) + s · pr (7)

qd(ti+1) := qd(ti) + bd = qd(ti) + b − s · pr (8)

qp(ti+1) := qp(ti) − b (9)

S(ti+1) := S(ti) + s (10)

Note that a portion of the bonded amount may be diverted as an incentive for bTKN/TKN LPs
(see 5.5) instead of being split between the mentioned buckets.

3.2 Redemption
At any time, a holder can redeem n bTKN for n

S · qr = n · pr TKN. The TKN are removed from the
Reserve Bucket and paid out the user, while the redeemed bTKN are burned.

The state of the Treasury changes as follows:

qr(ti+1) := qr(ti) · (1 − n

S
) (11)

S(ti+1) := S(ti) − n (12)

To throttle the rate of redemption or counter extreme situations and black swan events, the system
could charge a redemption fee (see 5.4).
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4 Economics of Chicken Bonds
The Boosted Token bTKN derives its value from the Reserve Bucket, as its direct backing, and the
yield generated by the entire Treasury.

Since the bTKN supply is redeemable for a proportional share of the acquired TKN, the market
cap of bTKN should normally be worth at least the amount of TKN kept in the Reserve Bucket. This
means that the redemption price pr will act as a price floor, below which arbitrage becomes possible:
people can buy bTKN for less than what they get upon redemption. Should bTKN ever drop below
the redemption price, we can expect it to bounce back quickly due to the buying pressure stemming
from redemptions.

In practice, we expect bTKN to trade significantly above its price floor most of the time due to
the yield amplification: if we suppose that rr corresponds to the market rate (or natural rate) rm,
the Reserve Bucket and thus pr will grow at a higher rate than rm given the extra yield generated
by the Pending and the Permanent Bucket. This increased return warrants a price premium since
the market should price in the amplified growth rate by paying a higher price for bTKN than the
redemption price. We call this expected market price the fair price pf and let λ = pf

pr
denote the

relative price premium or simply premium, i.e. the fraction between the fair price and the redemption
price.

4.1 Profitability of bonding
Bonding is only profitable for λ > 1, i.e. if pf > pr. In that case, we can easily calculate the break
even point which is reached when pf · s(t) > b, i.e.

pf

pr

t

t + α
> 1 (13)

Using λ:

λ
t

t + α
> 1 (14)

We can then solve for t and write the break even point in terms of λ:

t >
α

λ − 1 (15)

The actual rate of return from bonding depends on λ and the shape (steepness) of the accrual
curve s(t) given by the parameter α.
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4.2 Optimal rebonding strategy
When people bond, they accrue a bTKN balance which they can claim by giving up the TKN amount
they deposited at bond creation. Clearly then, the system doesn’t auto-compound the accrued profits
from bonding. In order to benefit from a compounding effect, bond holders can chicken in, sell their
received bTKN for TKN and reinvest the TKN to create a new, larger bond, and repeat that process
over and over again.

In the following derivation, we analyze the optimal rebonding strategy for users with a long-term
time horizon by deriving a time period Topt which maximizes the profitability of (regular) rebonding
for a given system configuration.

4.2.1 Optimal rebonding time

We assume b and λ to be constant for simplicity. The impact of λ on Topt and thus the accuracy of
the simplification depends on the volatility of λ and the length of the Topt period, which can be tuned
by the controller to be relatively short, limiting the impact of the volatility. As the system matures,
the yield amplification will tend to decline due to the perpetual growth of the Reserve Bucket relative
to the two other buckets, which cannot sustainably grow at the same rate in the long run. With a
decreasing relative size of the Permanent and Pending Buckets, their volatility should become less
impactful for the fair price, making the simplification more accurate over time (at least based on the
naive fair price formula, see 4.3.1). The assumption may be unrealistic for the early growth phase
though.

Before deriving the optimal rebonding time, we start by comparing the final value of a user’s bond
(expressed in TKN) after a time period T without rebonding (denoted by f) with the final value of
a bond that is rebonded at time t < T (denoted by fr).

No rebonding We multiply the accrued bTKN tokens from equation 2 by the market price which
we assume is equal to the fair price pf :

f = pf
b

pr

T

T + α
(16)

With rebonding At time t, when the user chickens in and rebonds, the new bond amount b′ will
be:

b′ = pf
b

pr

t

t + α
(17)

From that point until time T, there is a period of length T − t, during which the value of the bond
will be:

fr = pf
b′

pr

T − t

T − t + α
(18)
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So finally we have

fr = b

(
pf

pr

)2
t

t + α

T − t

T − t + α
(19)

Now we can generalize this approach to n regular rebonding events. We set t = T
n , and express

the resulting bond value (measured in TKN) for a given rebonding period t with fr(n) (note that the
final period after the last rebonding event is also T

n ).

fr(n) = b

(
pf

pr

)n
(

T
n

T
n + α

)n−1
T
n

T
n + α

fr(n) = b

(
pf

pr

)n
(

T
n

T
n + α

)n

fr(n) = b

(
pf

pr

)n(
T

T + nα

)n

fr(n) = b

(
pf

pr

T

T + nα

)n

(20)

To find the maximum value of fr(n), we take its derivative with respect to n (and we extend the
domain from natural to real numbers):

f ′
r(n) = b

(
pf

pr

T

T + nα

)n
(

ln
(

pf

pr

T

T + nα

)
− n

pf

pr

αT
(T +nα)2

pf

pr

T
T +nα

)

= b

(
pf

pr

T

T + nα

)n(
ln
(

pf

pr

T

T + nα

)
− nα

T + nα

)
Then equating it to zero:

f ′
r(n) = 0 ⇐⇒ ln

(
pf

pr

T

T + nα

)
= nα

T + nα

pf

pr

T

T + nα
= e

nα
T +nα

Dividing both sides by e:

pf

epr

T

T + nα
= e

nα
T +nα −1

pf

epr

T

T + nα
= e

−T
T +nα

T

T + nα
e

T
T +nα = pf

epr

This has the form zez = w, i.e. it is a Lambert W function: https://en.wikipedia.org/wiki/
Lambert_W_function, so:

T

T + nα
= W

(
pf

epr

)
1 + nα

T
= 1

W
(

pf

epr

)
n = T

α

 1
W
(

pf

epr

) − 1

 (21)
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To find the optimal rebonding time period Topt, we divide the total considered period T by the
optimal number of rebonding events n, and replace n by the expression above (21):

Topt = T

n
=

αW
(

epr

pf

)
1 − W

(
epr

pf

) (22)

We can write it in terms of premium λ = pf

pr

Topt =
αW

(
e
λ

)
1 − W

(
e
λ

) = α
1

W( e
λ ) − 1

(23)

Note that as λ > 1, e
λ < e, so 0 < W ( e

λ ) < 1 and therefore Topt > 0, and that Topt(λ) is a
monotonic decreasing function, with limλ→1 Topt(λ) = +∞.

To prove that rebonding time is greater than break even time, we need to prove that:

W
( e

λ

)
>

1
λ

which can be done using the property eW (x) = x
W (x) and assuming λ ≥ 1.

With rebonding and chicken-in fee Let’s call τ the fee to be used as rewards for bTKN/TKN
DEX pair.

At time t, when the user chickens in and rebonds, the new bond amount b′ will be:

b′ = pf
b(1 − τ)

pr

t

t + α
(24)

Repeating the same process as before we obtain:

fr(n) = b

(
(1 − τ)pf

pr

T

T + nα

)n

(25)

And then with the derivative equated to zero again:

n = T

α

 1
W
(

(1−τ)pf

epr

) − 1


Finally:

Topt = T

n
=

αW
(

epr

(1−τ)pf

)
1 − W

(
epr

(1−τ)pf

) (26)

We can write it in terms of premium λ = pf

pr

Topt =
αW

(
e

(1−τ)λ

)
1 − W

(
e

(1−τ)λ

) = α
1

W
(

e
(1−τ)λ

) − 1
(27)

4.2.2 Approximating the optimal rebonding time

As it turns out that the optimal rebonding time has no algebraic solution, we can also try to approx-
imate it by finding the point in time that maximizes the APR.

We first define the absolute premium ρ as the difference between the market (or fair) price and
the redemption price, i.e.: ρ = pf − pr.

Using the function a(t) to express APR

a(t) = s(t) · pf − b

b

365
t

=
b

pr

t
t+α pf − b

b

365
t
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a(t) =
(

pf

pr

t

t + α
− 1
)

365
t

(28)

we derive and equal to zero:

a′(t) = pf

pr

t + α − t

(t + α)2
365

t
−
(

pf

pr

t

t + α
− 1
)

365
t2

(we assume t > 0)

a′(t) = 0 ⇐⇒ pf

pr

α

(t + α)2 =
(

pf

pr

t

t + α
− 1
)

1
t

(we assume pr > 0)

a′(t) = 0 ⇐⇒ αpf t = pf t(t + α) − pr(t + α)2

a′(t) = 0 ⇐⇒ 0 = pf t2 − pr(t2 + 2αt + α2)

a′(t) = 0 ⇐⇒ (pf − pr)t2 − 2αprt − α2pr = 0

And solving for t (and getting the positive value):

t =
2αpr +

√
(2αpr)2 + 4(pf − pr)α2pr

2(pf − pr)

t =
αpr +

√
α2p2

r + α2pf pr − α2p2
r

pf − pr

t =
αpr +

√
α2pf pr

pf − pr

t =
αpr + α

√
pf pr

pf − pr

t = α
pr + √

pf pr

pf − pr
(29)

In terms of the λ defined in 4:
t = α

1 +
√

λ

λ − 1 (30)

Comparing 30 and 15, we can immediately see that chicken in optimal time for APR is always
strictly greater than break even time.

Simulations yield results very close to those obtained for the optimal rebonding time in the
previous section.

With a chicken-in fee Let’s call τ the fee applied to the initial bond amount before chickening
in, then we would have:

a(t) = s(t) · pf − b

b

365
t

=
b(1−τ)

pr

t
t+α pf − b

b

365
t

a(t) =
(

(1 − τ)pf

pr

t

t + α
− 1
)

365
t

(31)

like before, we derive and equal to zero:

a′(t) = (1 − τ)pf

pr

t + α − t

(t + α)2
365

t
−
(

(1 − τ)pf

pr

t

t + α
− 1
)

365
t2
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(we assume t > 0)

a′(t) = 0 ⇐⇒ (1 − τ)pf

pr

α

(t + α)2 =
(

(1 − τ)pf

pr

t

t + α
− 1
)

1
t

(we assume pr > 0)

a′(t) = 0 ⇐⇒ (1 − τ)αpf t = (1 − τ)pf t(t + α) − pr(t + α)2

a′(t) = 0 ⇐⇒ 0 = (1 − τ)pf t2 − pr(t2 + 2αt + α2)

a′(t) = 0 ⇐⇒ ((1 − τ)pf − pr)t2 − 2αprt − α2pr = 0

And solving for t (and getting the positive value):

t =
2αpr +

√
(2αpr)2 + 4((1 − τ)pf − pr)α2pr

2((1 − τ)pf − pr)

t =
αpr +

√
α2p2

r + (1 − τ)α2pf pr − α2p2
r

(1 − τ)pf − pr

t =
αpr +

√
(1 − τ)α2pf pr

(1 − τ)pf − pr

t =
αpr + α

√
(1 − τ)pf pr

(1 − τ)pf − pr

t = α
pr +

√
(1 − τ)pf pr

(1 − τ)pf − pr
(32)

In terms of the λ defined in 4:
t = α

1 +
√

(1 − τ)λ
(1 − τ)λ − 1 (33)

4.3 Estimating the fair price pf

We now attempt to estimate the fair price pf . This can be defined as the price of bTKN that a rational
and informed market should arrive at, under some set of idealized economic assumptions about market
participants. We present several different approaches. Some (naive and conservative approaches) take
a more formal approach with minimal economic assumptions. Others (yield comparison and recurive
approaches), make significant assumptions about the behavior of Chicken Bonds users and the wider
market. The latter approaches more closely resemble economic models than formal mathematical
derivations.

4.3.1 Naive approach

We start by modeling a yield-bearing token TKN as an investment that pays out a future sum of
money or stream of cash flows. Given a natural rate rm (aka market rate or discount rate) this allows
to calculate its present value (PV). One can then consider a compounding wrapper contract around
TKN that retains and compounds the generated yield, giving the investor the option to redeem their
wrapper share against a pro rata share of value held inside the contract. We assume that similarly
to a mutual accumulation fund, the value of the investor’s share in the compounding contract would
reflect the inner value of the share, i.e. the value the investor receives upon redemption.

In Chicken Bonds, the Reserve Bucket corresponds to a compounding wrapper with the extra
benefit of receiving the return from the Pending and the Permanent Bucket in addition to its own
yield. If those two other buckets were empty, the Reserve Bucket’s PV expressed in TKN would
be equal to its inner value, i.e. qr, and the fair price of bTKN would correspond to its redemption
price pr. However, with non-empty Permanent and Pending Buckets acting as extra yield sources,
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the value of the bTKN should exceed pr since holding bTKN is a better investment than being an
investor in a simple compounding contract holding TKN. The question is by how much.

Generally, if a token x receives cash flows F1, F2..., Fn from multiple different sources, the PV of the
token is given by the sum of the PVs of the cash flows, i.e. PV (x) = PV (F1)+PV (F2)+...+PV (Fn).
We suppose that the same rationale holds in principle if the yields are compounded in a redeemable
wrapper contract instead of being paid out.

While this applies to the Reserve Bucket, the Permanent Bucket as such is not subject to redemp-
tion, but only its yield becomes redeemable as part of the Reserve Bucket. Therefore, we posit that
the same amount of TKN inside the Permanent Bucket has a lesser impact on the price of bTKN
than it would have inside the Reserve Bucket, even when earning the same yield. We thus have to
discount its price impact by some factor df < 1 to account for the permanent locking of the principal.
Supposing that rr = rm, we can state the present value of 1 unit of bTKN as

pf = PV (ReserveBucket) + PV (PendingBucket) + PV (PermanentBucket)
S

(34)

We can express the PV of the Permanent Bucket in terms of the Reserve Bucket by converting
bucket quantities, rates of return, and applying the discount factor:

PV (PermanentBucket) = qd

qr

rd

rr
df PV (ReserveBucket) (35)

Recalling that PV (ReserveBucket) = qr, we can derive that

PV (PermanentBucket) = qd
rd

rr
df (36)

Regarding the Pending Bucket, we know that its content will eventually transition into the two
other buckets (chicken in) or leave the system (chicken out), and that the protocol will mint more
bTKN. On the other hand, bonders have an incentive to rebond after chickening in (see section 4.2),
increasing the Pending Bucket shortly after. If we assume for simplicity that all effects cancel out in
aggregate and suppose rp = rr, we can state the fair price formula as:

pf =
qr + qp + qd

rd

rr
df

S
(37)

We call this the naive formula. Although the formula looks oversimplified (glossing over the
fact that rebonding may have a different impact on the price than assumed), it turns out to have
interesting properties which seem to validate it to some extent.

Growth rate of bTKN supply and Treasury value We posit that in the long run the bTKN
supply S should grow at roughly the same pace as the total value of the Treasury (denoted by Rv, and
measured in TKN). The argument goes as follows: since the bTKN constitutes an economic share in
the system, a faster growth rate of S relative to Rv would imply a future dilution of bTKN, while a
slower growth rate would amount to a future appreciation. We can expect the market to factor such
effects into the current price of bTKN, implying that the fair price pf should correspond to the price
which results in the same relative growth rate for both.

As the backing ratio is always increasing, the value of the Reserve would grow faster than the total
supply of bTKN (S), implying that the other buckets (Pending and Permanent) have to increase at a
lower pace. While this may not seem so intuitive at first glance, the Permanent bucket will eventually
grow slower since it’s giving away its yield to the Reserve. And even with all users rebonding perfectly,
we also expect the Pending Bucket to eventually decrease over time relative to the Reserve (as we
have confirmed in some simulations).

∆S

S
= ∆Rv

Rv
(38)

Here, ∆S and ∆R respectively represent the change in S and R per unit time. We now seek
separate expressions for ∆S and ∆R as functions of bucket quantities and time in order to prove the
claim above.
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While the Treasury R consists of the three buckets, its real value Rv doesn’t necessarily equal the
sum of their content qr + qd + qp since not every bucket may achieve the same return as the market
rate rm. Supposing that rr = rp = rm ̸= rd, we can try to estimate Rv by applying correction factors
cd and cp to qd and qp respectively. This allows us to value the current Treasury as

Rv = qr + cdqd + cpqp (39)

If we take the yield on R into account and suppose that all bond holders who chicken in immedi-
ately sell the received bTKN for TKN and rebond them, we can express the absolute change of Rv

for a given time step ∆t as

∆Rv = ∆t

365rm(qr + qp) + ∆t

365rdqd + cp∆Spf (40)

with the last term expressing the value change due to the influx of new TKN per timestep from
rebonding based on an exchange at the current fair price. Note that the rebonded capital needs to
be corrected by cp, whereas no correction factor is required for the yield as it becomes part of the
Reserve Bucket (and given rr = rm).

∆S stands for the change in bTKN supply S per ∆t, which will be rebonded in entirety according
to our assumption. To express ∆S, we consider qp as the representation of all bond holders in
aggregate and assume for simplicity that bonding activity is distributed evenly over time with regard
to volumes and bond creation times, and that all initial bonding occurs within one Topt period. We
further suppose that the system configuration doesn’t change substantially within one Topt period.
Therefore, the fraction of the user base that chickens in (and rebonds) per time step is constant,
corresponding to the total pending bonds divided by the length of the period, i.e. qp

Topt
.

Given the optimal rebonding time Topt, we can thus treat the chickened-in fraction qp

Topt
for a

given time unit ∆t as if it was one aggregate bond which has accrued s(Topt) bTKN upon chicken in.
Thus, we have

∆S = s(Topt) = qp

Topt

1
pr

Topt

Topt + α
= S

qr

qp

Topt + α
(41)

Similarly, for the version with a controller targeting an average chicken in time Tt (see section
5.3), using equation 69 for α, we can derive

∆S = qp
S

qr

1
Tt + α

= S

qr

qp

Tt + Tt

pf
pr

−1

1+
√

pf
pr

= S

qr

qp

Tt + Tt
λ−1

1+
√

λ

(42)

The question is how to determine the correction factors in equations 39 and 40 and how it affects
the resulting fair price estimation. Using the naive fair price (equation 37), we have:

cd = qd
rd

rr
, cp = 1 (43)

In other words, we’re not correcting the Pending Bucket but supposing that rebonding cancels
out the effect of chicken ins on the fair price, consisting in a transition of funds from qp to qr and qd

and the minting of more bTKN.
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We can now plot equation 38 for the two versions with and without a dynamically controlled α:

The purple line depicts the fair price (y-axis) as a solution of equation 38 in function of the
Pending Bucket qp (x-axis) for qr = 1, qd = 2, S = 1, rr = rp = 0.1, rd = 0.05 and a fixed α = 30.

The red line shows the fair price for the controlled version for a Tt = 30 and a variable α.
As a reference, the naive fair price given by formula 36 is shown in green. We can clearly see

that the upper branch of the purple curve as well as the red curve approximate the naive fair price
formula (equation 36) for sufficiently large qp.

This basically means that the naive fair price formula satisfies the property that the Treasury
value and the bTKN supply grow at the same rate under the assumption that current users keep
recycling their bonds (and no new users are creating bonds).

What happens if we discount the effect of qp on the fair price by setting cp = 0.7 for example?

Note that the two versions of the fair price resulting from 38 are still very similar for large qp.
However, they now diverge from the corrected fair price formula shown in green given by:

pf =
qr + 0.7qp + qd

rd

rr
df

S
(44)

This seems to imply that only the naive fair price formula with cp = 1 satisfies the property of an
equal growth of Rv and S.
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Immediate effect of rebonding on the fair price Can we thus deduct that (optimal) rebonding
has no direct impact on the naive fair price at all?

It turns out that this is only true for the special case where rd = rr. Otherwise, the result may
look like this:

For rd < rr, rebonding negatively impacts the fair price, as can be seen in the chart above which
shows the fair price before (green) and after (blue) rebonding the entire Pending Bucket at Topt for
qr = 1, qd = 2, S = 1, rr = rp = 0.1, rd = 0.05 and a fixed α = 30.

This intuitively makes sense since it results in a larger portion of R earning a lower yield (the
later users chicken in and rebond, the larger the effect).

On the other hand, the parameter α has no influence on the resulting price curve, which also
doesn’t depend on whether the controller is turned on or not (and what time Tt it targets).

One explanation for this seemingly contradictory result could be that while rebonding as such
negatively impacts the naive fair price, the (higher) yield on the Pending Bucket compensates for
this, ensuring that the Treasury and the bTKN supply grow at the same rate as a whole.

4.3.2 Recursive approach

Instead of assuming that the effects of chicken ins and rebonding cancel out as in the naive approach
(4.3.1), we can try to estimate the future changes to the buckets based on historic user behavior or
expected optimal behavior.

For changes to the TKN quantities inside the buckets, we use the notation ∆qr, ∆qp and ∆qd

and let PIn denote the probability that a given bond holder chickens in, and POut that the holder
chickens out.

Assuming an infinitely fine-grained user base, we can apply these probabilities to all users in
aggregate (i.e. the buckets as such), allowing us to model the overall flows between the buckets.

With that we can express the fair price pf in a recursion step as

pf =
qb + qp(1 − PIn − POut) + (qr + PIn∆qr) + (qd + PIn∆qd) rd

rm
dd

SsLQT Y + PIn∆qr

pr

(45)

where qb stands for the amount bonded at the end of recursion step. As pr = qr

SsLQT Y
, we can

express the above equation as:

pf =
qb + qp(1 − PIn − POut) + (qr + PIn∆qr) + (qd + PIn∆qd) rd

rm
dd

SsLQT Y

(
1 + PIn∆qr

1
qr

) (46)

Assumptions:

1. PIn + POut ≤ 1
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2. POut = 0, as long as bonding is profitable

3. POut = 1 if bonding is not profitable

4. There is no user churn. Current users keep rebonding.

We further assume for simplicity that bonding activity is more or less evenly distributed over time
and that bonders who got past their optimal rebonding time chicken in with PIn = 1, while nobody
chickens in before reaching that point. This way, we can split the group of bonders into two segments,
the ones before and the ones after the rebonding

We model PIn for a randomly chosen bonder by setting it to the inverse of the optimal rebonding
time.

PIn = min
(

1,
1

Topt

)
(47)

Bucket changes based on history We can estimate ∆qr and ∆qd based on the historic average,
assuming that users would rebond when reaching the same fraction of their cap as in the past:

∆qr = qp
qr

qr + qd
(48)

∆qd = qp
qd

qr + qd
(49)

There should also exist a historical average rebonding period T corresponding to the current
relation between qr and qd:

qr

qr + qd
= T

T + 1
(50)

T = qr

qd
(51)

Even though T may not necessarily reflect the optimal rebonding strategy, we can use it to
estimate PIn:

PIn = 1
T

= qd

qr
(52)

This leads to the following fair price (where qb stands for the rebonded amount):

pf =
qb + qp

(
1 − qd

qr

)
+
(

qr + qd

qr
qp

qr

qr+qd

)
+
(

qd + qd

qr
qp

qd

qr+qd

)
rd

rm
dd

SsLQT Y

(
1 + qd

qr
qp

qr

qr+qd

1
qr

)
pf =

qb + qp

(
1 − qd

qr

)
+ qr

(
1 + qd

qr

qp

qr+qd

)
+ qd

(
1 + qd

qr

qp

qr+qd

)
rd

rm
dd

SsLQT Y

(
1 + qd

qr

qp

qr+qd

)
pf =

qb + qp

(
1 − qd

qr

)
SsLQT Y

(
1 + qd

qr

qp

qr+qd

) +
qr + qd

rd

rm
dd

SsLQT Y
(53)

Assuming all rebonders can sell their bTKN at the fair price without incurring any slippage, we
can express qb as follows:

qb = pf PIn∆qr
1
pr

= qd

qr
qp

qr

qr + qd

pf

pr
= qp

qd

qr + qd

pf

pr
(54)

Resulting in:

pf =
qp

(
1 + qd

qr+qd

pf

pr
− qd

qr

)
SsLQT Y

(
1 + qd

qr

qp

qr+qd

) +
qr + qd

rd

rm
dd

SsLQT Y
(55)
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Bucket changes based on optimal rebonding strategy One could use the optimal (future)
rebonding time instead of deducting the historical average:

∆qr = qp
Topt

Topt + 1 (56)

∆qd = qp

(
1 − Topt

Topt + 1

)
(57)

This leads to:

pf =
qb + qp

(
1 − 1

Topt

)
+
(

qr + 1
Topt

qp
Topt

Topt+1

)
+
(

qd + 1
Topt

qp

(
1 − Topt

Topt+1

))
rd

rm
dd

SsLQT Y

(
1 + 1

Topt
qp

Topt

Topt+1
1
qr

)

pf =
qb + qp

(
1 − 1

Topt

)
+
(

qr + qp

Topt+1

)
+
(

qd + qp

Topt
− qp

Topt+1

)
rd

rm
dd

SsLQT Y

(
1 + 1

Topt+1
qp

qr

)

pf =
qb + qp

(
1 − 1

Topt

)
+ qr + qp

Topt+1 +
(

qd + qp

(
1

Topt
− 1

Topt+1

))
rd

rm
dd

SsLQT Y

(
1 + 1

Topt+1
qp

qr

)

pf =
qb + qp

(
1 + 1

Topt

(
rd

rm
dd − 1

)
+ 1

Topt+1

(
1 − rd

rm
dd

))
+ qr + qd

rd

rm
dd

SsLQT Y

(
1 + 1

Topt+1
qp

qr

) (58)

With rd

rm
dd = 1

pf = qb + qp + qr + qd

SsLQT Y

(
1 + 1

Topt+1
qp

qr

) (59)

For constant rebonding:

qb = qp
1

Topt

Topt

Topt + 1
pf

pr
= qp

Topt + 1
pf

pr
(60)

This leads to:

pf =
qp

Topt+1
pf

pr
+ qp

(
1 + 1

Topt

(
rd

rm
dd − 1

)
+ 1

Topt+1

(
1 − rd

rm
dd

))
+ qr + qd

rd

rm
dd

SsLQT Y

(
1 + 1

Topt+1
qp

qr

)

pf =
qp

(
1 + 1

Topt

(
rd

rm
dd − 1

)
+ 1

Topt+1

(
pf

pr
+ 1 − rd

rm
dd

))
+ qr + qd

rd

rm
dd

SsLQT Y

(
1 + 1

Topt+1
qp

qr

) (61)

With rd

rm
dd = 1

pf =
qp

(
1 + 1

Topt+1
pf

pr

)
+ qr + qd

SsLQT Y

(
1 + 1

Topt+1
qp

qr

) (62)

We have tried to validate results from this section without success. For instance below we have
charts for the historic variant of the recursive approach. We can see non-convergence and really weird
behaviour starting from iteration 10:

4.3.3 Yield comparison approach

We can also consider the evolution of the fair price of bTKN over a given time period and compare
it with an expected yield. In the following, we outline two different approaches.
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Equating ROI of bonding TKN and holding bTKN We suppose that users would bond TKN
rather than hold bTKN if the expected ROI from bonding is higher than of (buying and) holding
bTKN, and vice versa. As long as holding bTKN is more attractive than bonding TKN, we can
expect buying pressure on bTKN. Conversely, there should be selling pressure on bTKN if bonding
is seen as more profitable since people would likely trade their bTKN for TKN.

As a consequence, there must be an equilibrium price at which holding bTKN and bonding TKN
result in the same ROI for both activities. Due to the yield amplification, it’s safe to assume that in
the long run, holding bTKN is at least as profitable as the underlying yield producing strategy for
TKN. We further assume that the price of TKN is already “arbitraged” and adapted to the natural
rate rm, which thus carries over to the price of bTKN. Therefore, the equilibrium price for bonding
vs. holding should also be meaningful as a metric for the fair price.

With constant α We consider one optimal rebonding period Topt with a fixed parameter α and
suppose that the system is ”frozen” during that time frame, i.e. nobody chickens in or out and no
new bonds are created. Since the protocol is still earning yield on its treasury R, the only quantity
that would change during the respective period is qr, but we can neglect the compounding effect for
small rr, rp and rd and short Topt, treating R as constant.

Further, we make the simplifying assumption that the price premium λ stays constant during that
time frame. Thus, the fair price pf changes from t to t + Topt at the same rate as the redemption
price pr, yielding the ROI of holding bTKN:

HROI = pf (t + Topt) − pf (t)
pf (t) = pr(t + Topt) − pr(t)

pr(t) (63)

The resulting redemption price at time t + Topt can be expressed by

pr(t + Topt) =
qr + Topt

365 (rpqp + rrqr + rdqd)
S

(64)
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yielding:

HROI =
qr+ Topt

365 (rpqp+rrqr+rdqd)
S − pr(t)

pr(t)

= qr

S · pr(t) +
Topt

365 (rpqp + rrqr + rdqd)
S · pr(t) − pr(t)

pr(t)

= 1 + Topt

365
rpqp + rrqr + rdqd

qr
− 1

= Topt

365
rpqp + rrqr + rdqd

qr

(65)

On the other hand, we can express the ROI of bonding TKN for the same period as:

BROI = pf (t + Topt)
pr(t + Topt)

Topt

Topt + α
− 1

=
pf (t)(1 + Topt

365 (rpqp + rrqr + rdqd))
pr(t)(1 + Topt

365 (rpqp + rrqr + rdqd))
Topt

Topt + α
− 1

= pf (t)
pr(t)

Topt

Topt + α
− 1

(66)

Setting the two ROIs equal, we can solve the following equation for pf :

BROI = HROI (67)

and get:
pf = pr

(
1 + Topt

365
rpqp + rrqr + rdqd

qr

)
Topt + α

Topt
(68)

Note that, from 22, Topt depends on pf , so we would need some more steps to isolate the fair price.
We can use equation 30 as an approximation of Topt to make it easier and get rid of the Lambert W
function.

The following chart plots pf on the y-axis in function of the Pending Bucket qp (x-axis) for α=(50,
100, 150, 200), with qr = 1, qd = 2, S =1 and rr = rp = rd = 0.1. As a reference, the naive fair price
given by formula 36 is shown in black.

Note that the curves are increasing for higher α and that all the equations have lower branches,
only one of which is shown on the chart (in blue for α=50).

With α being adjusted by the controller By assuming that the controller will keep the ac-
tual rebonding time constant (section 5.3), we can solve the approximation formula for Topt (equation
30) for α, obtaining

α = Topt

pf

pr
− 1

1 +
√

pf

pr

= Topt
λ − 1

1 +
√

λ
(69)
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In the formula for BROI as defined above (equation 66), we can substitute α by equation 69 and,
after rearranging and simplifying, we get

BROI =
√

pf

pr
− 1 =

√
λ − 1 (70)

Supposing that users will chicken in at the optimal rebonding time and given a target chicken in
time Tt aimed for by the controller (see section 5.3), we can replace Topt by Tt in formula 65:

HROI = Tt

365
rpqp + rrqr + rdqd

qr
(71)

Using the new definitions of HROI and BROI , we can solve equation 67 for pf , obtaining

pf = pr

(
1 + Tt

365
rpqp + rrqr + rdqd

qr

)2
(72)

The following chart depicts the fair price (y-axis) according to equation 72 in function of the
Pending Bucket qp (x-axis) for Tt = (60, 120, 240, 480, 960), with qr = 1, qd = 2, S = 1 and rr = rp =
rd = 0.1. As a reference, the naive fair price given by formula 36 is shown in black.

Note that the impact of qp on the fair price gets bigger for larger Tt, and the same is true for qd

and qr, which influence pf in the same fashion.

Equating ROI of staking TKN and holding bTKN Assuming rational markets and no ad-
ditional risks for holding bTKN compared to holding and staking TKN (or getting yield from the
underlying strategy for TKN), we suppose that the market price of bTKN would grow at the same
rate as the value of staked TKN. The rationale being that if the market expects bTKN to grow faster
in the future, it should pay a higher price for bTKN now, meaning that the initial price premium
should reflect the future growth potential and cancel out any oversized yield from the start.

If we know what yield to expect, we could formulate a differential equation to derive a formula
for pf or at least a parameter γ for the impact of the pending bucket in the naive formula:

pf =
qr + γqp + qd · rd

rr
· df

S
(73)

We could then state the following equation (where rs is the yield of staking TKN):

pf (t + 365) − pf (t)
pf (t) = rs = rm (74)

Given that people would rebond during the course of the year, it’s simpler to consider a time
period that corresponds to an optimal rebonding period for the current premium, which we suppose
to be constant as long as no rebonding happens (all else being equal). This means, we assume away
any new bonds and chicken-outs, and only consider the group of existing bonders which all rebond
perfectly.

This allows us to reformulate the equation, which could be solved for γ:

pf (t + Topt) − pf (t)
pf (t) = Topt

365 rm (75)
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4.3.4 Conservative approach

This approach is probably not the most accurate or realistic, but at least it can serve as a lower
bound for the fair price.

Let’s imagine a user who wants to buy bTKN to sell it after some time T for a profit, and, being
conservative, they don’t want to rely on the bTKN valuations of other users - they simply want to
make sure that redeeming their bTKN would at least result in net gains which correspond to the
natural rate of TKN.

In the following chart, the red line corresponds to the natural rate, the green line to the redemption
price and the purple line to the (conservative) fair price.

The formula therefore for the conservative fair price is:

pf (t) = pr(t + T ) − (n(t + T ) − n(t)) (76)

Where n(t) represents the natural rate.
Assuming time t to be denominated in days, the daily natural rate rm is expected to be low, so

for values of t in the order of magnitude of a year we can use the following approximation:

n(t) = (1 + rm)t = 1 + rm · t (77)

We now seek a formula for pr which can in turn be used in pf .

With rebonding With rebonding this is quite hard, as we need the optimal rebonding time Topt,
which in itself uses the fair price (see 4.2.1).

If we assume that redemption price has an exponential behavior (due to the compounding effect
of rebonding) of the form pr = at 1, then fair price would be (using approximation in 77):

pf (t) = at+T − rmT (78)

Let’s try to find a.
For t = 0, qr0 = S0 and pr(0) = 1. See 5.1.
Optimal rebonding time (using 29 and assuming α = 1 to simplify):

Topt = 1 +
√

aT − rmT

aT − rmT − 1 (79)

The corresponding bTKN issuance expression for t = 0 is:
1This is probably wrong, as we will see in the no rebonding case!
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Topt

Topt + 1 =
1+

√
aT −rmT

aT −rmT −1
1+

√
aT −rmT

aT −rmT −1 + 1

= 1 +
√

aT − rmT

1 +
√

aT − rmT + aT − rmT − 1

= 1 +
√

aT − rmT

aT − rmT +
√

aT − rmT

= (1 +
√

aT − rmT )(aT − rmT −
√

aT − rmT )
(aT − rmT )2 + aT − rmT

= aT − rmT −
√

aT − rmT + (aT − rmT )
√

aT − rmT − (aT − rmT )
(aT − rmT )(aT − rmT − 1)

= −
√

aT − rmT + (aT − rmT )
√

aT − rmT

(aT − rmT )(aT − rmT − 1)

= (aT − rmT − 1)
√

aT − rmT

(aT − rmT )(aT − rmT − 1)

=
√

aT − rmT

aT − rmT

= 1√
aT − rmT

(80)

Now moving forward to t1 = Topt:

qp1 = qp0
aT − rmT√
aT − rmT

= qp0

√
aT − rmT

qr1 = qr0 + [(qr0 + qp0)rs + qd0rd]Topt + qp0
1√

aT − rmT

S1 = S0 +
qp0√

aT − rmT
= qr0 +

qp0√
aT − rmT

So finally:

pr1 = qr1
S1

=
qr0 + [(qr0 + qp0)rs + qd0rd]Topt + qp0

1√
aT −rmT

qr0 + qp0√
aT −rmT

= 1 +
(qr0 + qp0)rs + qd0rd + qp0

qr0 + qp0√
aT −rmT

1 +
√

aT − rmT

aT − rmT − 1

(81)

If we now equate this to pr(Topt) we get:

1 +
(qr0 + qp0)rs + qd0rd + qp0

qr0 + qp0√
aT −rmT

1 +
√

aT − rmT

aT − rmT − 1 = a
1+

√
aT −rmT

aT −rmT −1 (82)

which seems quite hard to solve for a.
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Without rebonding Although an approach without rebonding is unlikely to be fruitful since the
redemption price will be too close to the natural rate, we can still try. Now we only account for the
yield generated, which doesn’t increase the bTKN total supply:

St = S1 = S0 = qr0

We try to compute Reserve Bucket for several time intervals, let’s say daily:

qr1 = qr0 + [(qr0 + qp0)rs + qd0rd] = qr0 + qr0rs + qp0rs + qd0rd

qrt = qr0(1 + rs)t + (qp0rs + qd0rd)

rt
s +

t−1∑
j=1

(
t

j

)
aj


So for time t the redemption price would be:

pr(t) = qrt

S1
=

qr0(1 + rs)t + (qp0rs + qd0rd)
(

rt
s +

∑t−1
j=1

(
t
j

)
aj
)

qr0

pr(t) = (1 + rs)t +
qp0rs + qd0rd

qr0

rt−1
s +

t−1∑
j=1

(
t

j

)
rt−1−j

s

 (83)

We can approximate it to:

pr(t) = (1 + rs)t +
qp0rs + qd0rd

qr0
t (84)

In particular this shows that the assumption that redemption price follows a pure exponential at

is not correct.

Note: it may make more sense to correct the initial fair price expression such that it accounts for
the natural rate by taking a ”time value of money” discount approach, i.e:

pf (t) = pr(t + T )
n(T ) (85)

Which in turn would impact the derivations above.

4.4 Self-reinforcing price impact
It follows from equations 23 that a higher premium λ leads to a shorter rebonding period t (the same
is true for 30, and for the break even time in 15). As a consequence, we can expect bonders to chicken
in earlier, resulting in a higher fraction of the bond bp that transitions into the Permanent Bucket,
which makes the premium more sustainable and may be favorable for the fair price of bTKN.

Thus, if the market price of bTKN increases while everything else stays equal, the chances are
higher that the price will continue to rise in the future thanks to earlier chicken ins. While this
effect may not always be immediate, a large bTKN price hike could effectively push bonders beyond
their optimal rebonding times. Assuming perfectly rational behavior, this would result in immediate
chicken ins (and rebonding).

4.5 Self-stabilizing effect of redemptions and its help to regain traction
As redemptions reduce the Reserve Bucket and the bTKN supply in the same proportion, they
indirectly increase the impact of the Permanent and the Pending Bucket on bTKN through a higher
yield amplification. While the redemption price doesn’t change when somebody redeems bTKN for
TKN, the fair price and thus the expected premium grow as a result.

We can therefore expect a self-stabilizing effect of redemptions: for any given qp ≥ 0 and qd > 0
there should be an equilibrium state with qr > 0 where pr = pf , making further redemptions and a
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complete drainage of the Reserve Bucket unlikely. Given this de facto lower bound on qr, a portion
of the Reserve Bucket will behave as if it was permanent.

Furthermore, natural fluctuations of the market price pm compared to pf could help the system
regain traction should it ever reach a state where pf = pr: if the market temporarily prices the bTKN
below its fair price (pm < pf ), redemptions will kick in and raise pf , increasing the odds that the
market will return to pm > pr and make bonding attractive again. This dynamic should apply even
if qp = 0, i.e. when bonding activity has come to a complete halt.

5 Protocol enhancements and variations
5.1 Bootstrapping
Right after launch, the initial bTKN supply is 0 as the token is only minted upon chicken in events.
Similarly, the Reserve Bucket is empty until the first bond holder chickens in. As a result, the
redemption price pr (backing ratio) is undefined and cannot be used for calculating the accrued
amount s(t) during this bootstrapping period.

Meanwhile, the protocol is already earning yield on the Pending Bucket before anybody chickens
in. Giving this yield to the bond holder who chickens ins first wouldn’t seem fair.

To tackle these problems, we can define the initial redemption price at the time of the first chicken
in to be pr = 1. The protocol thus needs to mint the same amount of bTKN as the amount of TKN
acquired by the protocol on that first chicken in event. The accumulated yield of the Pending Bucket,
which would normally belong to the Reserve Bucket, can be used to reward the LPs bootstrapping
bTKN/TKN DEX pair (see 5.5).

5.2 Two-bucket version
A Permanent Bucket may not be suitable for all use cases and protocol tokens. For example, if TKN
is a token that is minted through loans, keeping a portion of it inside the Permanent Bucket forever
would essentially reduce the circulating supply, which could impact the ability of borrowers to repay
their debts. On the other hand, such tokens have usually no fixed or capped supply, but can be
minted as needed, meaning that technically there’s an unbounded amount of TKN that could be
bonded over time.

This makes bonding more sustainable in the long run even without a Permanent Bucket.

5.3 Automatically adjusting the steepness α of the accrual curve
The break even point (equation 15) and the optimal rebonding time (equations 23, 30 and 33) heavily
depend on the premium λ as well as on α, i.e. the steepness of the bTKN accrual curve s(t).

Simulations have shown that the premium λ tends to decrease over time as the system matures. If
α was kept constant, this would mean that the break even and optimal rebonding times would increase
throughout the lifetime of the system, making bonds less and less attractive due to a decreasing APR.

To avoid this outcome, the system could automatically adjust α to keep the optimal bonding
duration constant. To that end, a controller could track the average (size-weighted) outstanding
bond age and decrease α by a certain factor whenever the average age exceeds a given target age
Ta. Assuming an even distribution of bond creation dates, we can deduce a target average chicken in
time Tt = 2Ta.

5.4 Redemption fee
To throttle the outflow of TKN from the Reserve Bucket, the system may charge a fee on redemptions,
called the redemption fee. The redeemer of n bTKN would then get slightly less TKN than their pro
rata share, i.e. x < n · pr. The difference (n · pr − x) could be either kept in the Reserve Bucket or
moved to the Permanent Bucket.

In both cases, the captured fee increases the fair price by the same amount, in addition to the
positive effect of the redemption as such on pf (see 4.5). However, by leaving the fee in the Reserve
Bucket the redemption price pr also increases, implying that by chickening in a user could directly
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impact the backing ratio and the cap of the existing users. To avoid such interference and potential
bank run situations, it seems preferable to capture the fee revenue in the Permanent Bucket instead,
resulting in a larger and more sustainable premium growth on top.

An exponentially decaying fee schedule could be used to efficiently throttle redemptions: the fee
is dynamically increased upon every redemption in function of the redeemed amount, decaying over
time to a minimum when no redemptions take place.

5.5 Chicken-in fee to incentivize bTKN/TKN LPs
Having a liquid bTKN/TKN market is crucial for bond holders to exit their positions or to rebond.
For that purpose, the system may incentivize LPs providing liquidity to a bTKN/TKN DEX pair by
diverting a portion of the bonded amount upon every chicken-in.

As a matter of fact, TKN and bTKN will be more strongly correlated in price than two random
volatile assets, reducing the expected impermanent loss. The correlation between the two assets may
influence the choice of the AMM, leaving room for custom trading curves optimized for lower slippage.

One way to fund the incentives is by charging a fee on the bTKN amount paid out upon a chicken
in as described in 3.1.2. Such an incentive scheme is dependent on the bonding activity and thus
synchronized with the needs of the system and current bond holders wanting to exit.

6 Conclusion
Chicken Bonds will allow projects to bootstrap POL without having to pay for it. It achieves this
by creating a flywheel effect between bonding and bTKN pricing: the more people bond, the more
yield is retained for the bTKN holders. A higher yield in turn increases the price premium over the
underlying TKN, making bonding more attractive through a higher APR. Meanwhile, the protocol
is able to acquire both permanent and redeemable TKN liquidity, which can be put to different uses
based on the needs of the project.
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