-
Notifications
You must be signed in to change notification settings - Fork 139
/
Copy pathiBVP_PURE_iBVPNet_BASIC.yaml
49 lines (49 loc) · 1.63 KB
/
iBVP_PURE_iBVPNet_BASIC.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
BASE: ['']
TOOLBOX_MODE: "only_test" # "train_and_test" or "only_test"
TEST:
METRICS: ['MAE', 'RMSE', 'MAPE', 'Pearson', 'SNR', 'BA', 'MACC']
USE_LAST_EPOCH: False
DATA:
FS: 30
DATASET: PURE
DO_PREPROCESS: False # if first time, should be true
DATA_FORMAT: NCDHW
DATA_PATH: "/mnt/sda/data/jitesh/PURE_Dataset/raw" # Raw dataset path, need to be updated
CACHED_PATH: "/home/jitesh/data/PURE_Dataset" # Processed dataset save path, need to be updated
EXP_DATA_NAME: "PURE_Raw_160_72x72"
BEGIN: 0.0
END: 1.0
PREPROCESS:
DATA_TYPE: ['Raw'] #if use iBVPNet, should be Raw
LABEL_TYPE: Standardized
DO_CHUNK: True
CHUNK_LENGTH: 160
CROP_FACE:
DO_CROP_FACE: True
BACKEND: 'HC' # HC for Haar Cascade, RF for RetinaFace
USE_LARGE_FACE_BOX: True
LARGE_BOX_COEF: 1.5
DETECTION:
DO_DYNAMIC_DETECTION: True
DYNAMIC_DETECTION_FREQUENCY : 30
USE_MEDIAN_FACE_BOX: False # This should be used ONLY if dynamic detection is used
RESIZE:
H: 72
W: 72
DEVICE: cuda:0
NUM_OF_GPU_TRAIN: 1
LOG:
PATH: runs/exp
MODEL:
DROP_RATE: 0.1
NAME: iBVPNet
iBVPNet:
CHANNELS: 3
FRAME_NUM: 160
INFERENCE:
BATCH_SIZE: 4
EVALUATION_METHOD: "FFT" # "FFT" or "peak detection"
EVALUATION_WINDOW:
USE_SMALLER_WINDOW: False # Change this if you'd like an evaluation window smaller than the test video length
WINDOW_SIZE: 30 # In seconds
MODEL_PATH: "./final_model_release/iBVP_iBVPNet.pth"