-
Notifications
You must be signed in to change notification settings - Fork 128
/
report.py
178 lines (151 loc) · 5.93 KB
/
report.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import argparse
import csv
import datetime
import gzip
import io
import json
from collections import Counter
from itertools import groupby
from pathlib import Path
from urllib.parse import urlencode
from urllib.request import Request, urlopen
from rows.fields import make_header
from rows.utils import load_schema
BASE_DIR = Path(__file__).parent
def sum_all(data, key):
return sum(row[key] for row in data if row[key] is not None)
class Schema: # TODO: add this class to rows
@classmethod
def from_file(cls, filename):
obj = cls()
obj.filename = filename
obj.fields = load_schema(
str(filename)
) # TODO: load_schema must support Path objects
return obj
def deserialize(self, row):
field_names = list(row.keys())
field_mapping = {
old: self.fields[new]
for old, new in zip(field_names, make_header(field_names))
}
return {
key: field_mapping[key].deserialize(value) for key, value in row.items()
}
def get_brasilio_data(dataset, table, **filters):
url = f"https://brasil.io/api/dataset/{dataset}/{table}/data/"
if "page_size" not in filters:
filters["page_size"] = 10_000
if filters:
url += "?" + urlencode(filters)
finished = False
data = []
while not finished:
try:
request = Request(url, headers={"User-Agent": "brasilio-covid19-scraper"})
response = urlopen(request)
except Exception:
import traceback
print(f"ERROR while downloading {url}")
traceback.print_exc()
exit(1)
response_data = json.loads(response.read())
data.extend(response_data["results"])
url = response_data["next"]
if not url:
finished = True
return data
def get_local_data(table):
schema = Schema.from_file(BASE_DIR / "schema" / f"{table}.csv")
filename = BASE_DIR / "data" / "output" / f"{table}.csv.gz"
with io.TextIOWrapper(gzip.GzipFile(filename), encoding="utf-8") as fobj:
return [schema.deserialize(row) for row in csv.DictReader(fobj)]
def filter_rows(data, **kwargs):
for row in data:
if all(row[key] == value for key, value in kwargs.items()):
yield row
def print_stats(title, data):
print(f"*{title.upper()}*:")
if not data:
print("Nenhum! o/")
else:
data = "- " + "\n- ".join(data)
print(data)
print()
def main():
parser = argparse.ArgumentParser()
parser.add_argument("source", choices=["api", "local"])
args = parser.parse_args()
if args.source == "api":
boletins = get_brasilio_data("covid19", "boletim", is_last=True)
casos = get_brasilio_data("covid19", "caso", is_last=True)
elif args.source == "local":
boletins = get_local_data("boletim")
casos = get_local_data("caso")
state_rows = list(filter_rows(casos, is_last=True, place_type="state"))
city_rows = list(filter_rows(casos, is_last=True, place_type="city"))
confirmados_estados = sum_all(state_rows, "confirmed")
confirmados_municipios = sum_all(city_rows, "confirmed")
mortes_estados = sum_all(state_rows, "deaths")
mortes_municipios = sum_all(city_rows, "deaths")
print_stats(
"últimos dados",
[
f"{len(boletins)} boletins capturados",
f"{confirmados_estados} casos confirmados (estado)",
f"{confirmados_municipios} casos confirmados (municípios)",
f"{mortes_estados} mortes (estado)",
f"{mortes_municipios} mortes (municípios)",
],
)
casos.sort(key=lambda row: row["date"], reverse=True)
last_date = casos[0]["date"]
casos.sort(key=lambda row: row["state"])
confirmed_diff, deaths_diff, updated_diff = [], [], []
for state, data in groupby(casos, key=lambda row: row["state"]):
data = list(data)
state_date = max(row["date"] for row in data)
state_rows = list(filter_rows(data, is_last=True, place_type="state"))
city_rows = list(filter_rows(data, is_last=True, place_type="city"))
if not state_rows:
confirmed_state = None
deaths_state = None
else:
confirmed_state = sum_all(state_rows, "confirmed")
deaths_state = sum_all(state_rows, "deaths")
state_date = state_rows[0]["date"]
confirmed_cities = sum_all(city_rows, "confirmed")
deaths_cities = sum_all(city_rows, "deaths")
confirmed_differs = confirmed_state != confirmed_cities
deaths_differs = deaths_state != deaths_cities
date_count = Counter(row["date"] for row in city_rows)
if len(date_count) > 1:
wrong_cities = []
for date, _ in date_count.most_common():
if date != state_date:
wrong_cities.extend(list(filter_rows(city_rows, date=date)))
wrong_str = " - municípios: " + ", ".join(
sorted(f"{row['city']} ({row['date']})" for row in wrong_cities)
)
else:
wrong_str = ""
if confirmed_differs:
confirmed_diff.append(
f"{state} ({confirmed_cities}/{confirmed_state}){wrong_str}"
)
elif wrong_str:
confirmed_diff.append(f"{state} {wrong_str}")
if deaths_differs:
deaths_diff.append(f"{state} ({deaths_cities}/{deaths_state})")
if state_date != last_date:
dias = abs(
datetime.date.fromisoformat(str(state_date))
- datetime.date.fromisoformat(str(last_date))
).days
msg_atraso = f" - *{dias} dias de atraso*" if dias >= 2 else ""
updated_diff.append(f"{state} ({state_date}){msg_atraso}")
print_stats("desatualizados", updated_diff)
print_stats("confirmados inconsistentes", confirmed_diff)
print_stats("mortes inconsistentes", deaths_diff)
if __name__ == "__main__":
main()