-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTheBlock.cpp
187 lines (176 loc) · 8.08 KB
/
TheBlock.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#include "FinalSuperblock.h"
#include "GlobalPrecisionParameters.h"
using namespace Eigen;
TheBlock::TheBlock(const Hamiltonian& ham)
{
blockParts.m = d;
blockParts.hS = ham.h1;
blockParts.rhoBasisH2
.assign(ham.siteBasisH2.begin(),
ham.siteBasisH2.begin() + nIndepCouplingOperators);
};
TheBlock::TheBlock(const effectiveHams& blockParts) : blockParts(blockParts) {};
TheBlock TheBlock::nextBlock(const stepData& data, rmMatrixX_t& psiGround,
double& cumulativeTruncationError)
{
int md = blockParts.m * d;
if(data.exactDiag)
{
effectiveHams newBlockParts;
newBlockParts.m = md;
newBlockParts.hS = kp(blockParts.hS, Id_d)
+ data.ham.EDNNCoupling(blockParts.rhoBasisH2)
+ kp(MatrixXd::Identity(blockParts.m, blockParts.m),
data.ham.h1);
newBlockParts.rhoBasisH2.reserve(nIndepCouplingOperators);
for(auto op = data.ham.siteBasisH2.begin(), end = op + nIndepCouplingOperators;
op != end; op++)
newBlockParts.rhoBasisH2
.push_back(kp(MatrixXd::Identity(blockParts.m, blockParts.m),
*op));
return TheBlock(newBlockParts);
// if near edge of system, no truncation necessary so skip DMRG algorithm
};
lanczos(data.ham,
data.infiniteStage ? blockParts : data.compBlock -> blockParts,
psiGround, data.lancTolerance); // calculate ground state
int compm = data.compBlock -> blockParts.m;
psiGround.resize(md, compm * d);
SelfAdjointEigenSolver<MatrixX_t> rhoSolver(psiGround * psiGround.adjoint());
// find density matrix eigenstates
int evecsToKeep;
if(md <= data.mMax)
evecsToKeep = md;
else
{
int firstKeptEval = md - data.mMax;
for(; firstKeptEval < md
&& (rhoSolver.eigenvalues()(firstKeptEval) == 0
|| ( rhoSolver.eigenvalues()(firstKeptEval)
- rhoSolver.eigenvalues()(firstKeptEval - 1))
/ std::abs(rhoSolver.eigenvalues()(firstKeptEval))
< degenerateDMCutoff);
firstKeptEval++);
// find the the max number of eigenvectors to keep that do not
// terminate inside a degenerate eigenspace of the density matrix
evecsToKeep = md - firstKeptEval;
if(evecsToKeep == 0)
{
std::cerr << "More than mMax highest-weighted density-matrix "
<< "eigenvectors are degenerate." << std::endl;
exit(EXIT_FAILURE);
}
else if(evecsToKeep != data.mMax)
std::cout << "Warning: mMax truncation ends in a degenerate DM "
<< "eigenspace, lowering cutoff to " << evecsToKeep
<< " states." << std::endl;
};
cumulativeTruncationError
+= rhoSolver.eigenvalues().head(md - evecsToKeep).sum();
primeToRhoBasis = rhoSolver.eigenvectors().rightCols(evecsToKeep);
// construct change-of-basis matrix
if(!data.infiniteStage) // modify psiGround to predict the next ground state
{
for(int sPrimeIndex = 0; sPrimeIndex < md; sPrimeIndex++)
// transpose the environment block and the right-hand free site
{
rmMatrixX_t ePrime = psiGround.row(sPrimeIndex);
ePrime.resize(compm, d);
ePrime.transposeInPlace();
ePrime.resize(1, d * compm);
psiGround.row(sPrimeIndex) = ePrime;
};
psiGround = primeToRhoBasis.adjoint() * psiGround;
// change the expanded system block basis
psiGround.resize(evecsToKeep * d, compm);
psiGround *= data.beforeCompBlock -> primeToRhoBasis.transpose();
// change the environment block basis
psiGround.resize(evecsToKeep * d
* data.beforeCompBlock -> blockParts.m * d, 1);
};
effectiveHams newBlockParts;
newBlockParts.m = evecsToKeep;
// project expanded system block down to highest-weighted DM eigenbasis:
primeToRhoBasis.resize(blockParts.m, d * evecsToKeep);
rmMatrixX_t oSO = blockParts.hS * primeToRhoBasis;
oSO.resize(blockParts.m * d, evecsToKeep);
primeToRhoBasis.resize(blockParts.m * d, evecsToKeep);
newBlockParts.hS.noalias() = primeToRhoBasis.adjoint() * oSO;
// system block term
newBlockParts.hS.noalias() += data.ham.NNCoupling(this); // coupling term
rmMatrixX_t oDag = primeToRhoBasis.adjoint();
oDag.resize(evecsToKeep * blockParts.m, d);
rmMatrixX_t oDagH1 = oDag * data.ham.h1;
oDagH1.resize(evecsToKeep, blockParts.m * d);
newBlockParts.hS.noalias() += oDagH1 * primeToRhoBasis; // free site term
// project coupling operators into new DM eigenspace basis:
newBlockParts.rhoBasisH2.reserve(nIndepCouplingOperators);
for(auto op = data.ham.siteBasisH2.begin(),
end = op + nIndepCouplingOperators; op != end; op++)
{
rmMatrixX_t reshapedODag = primeToRhoBasis.adjoint();
reshapedODag.resize(evecsToKeep * blockParts.m, d);
rmMatrixX_t oDagH2 = reshapedODag * *op;
oDagH2.resize(evecsToKeep, blockParts.m * d);
newBlockParts.rhoBasisH2.push_back(oDagH2 * primeToRhoBasis);
};
return TheBlock(newBlockParts); // save expanded-block operators in new basis
};
rmMatrixX_t TheBlock::projectNNCoupling(const rmMatrixX_t& blockOp,
const rmMatrixX_t& siteOp)
{
int nextSiteM = primeToRhoBasis.cols();
rmMatrixX_t oDag = primeToRhoBasis.adjoint();
oDag.resize(nextSiteM * blockParts.m, d);
primeToRhoBasis.resize(blockParts.m, d * nextSiteM);
rmMatrixX_t oDagHSite = oDag * siteOp,
hSysO = blockOp * primeToRhoBasis;
primeToRhoBasis.resize(blockParts.m * d, nextSiteM);
oDagHSite.resize(nextSiteM, blockParts.m * d);
hSysO.resize(blockParts.m * d, nextSiteM);
return oDagHSite * hSysO;
};
FinalSuperblock TheBlock::createHSuperFinal(const stepData& data,
rmMatrixX_t& psiGround, int lSys,
int skips) const
{
double gsEnergy = lanczos(data.ham, data.compBlock -> blockParts, psiGround,
data.lancTolerance); // calculate ground state
return FinalSuperblock(gsEnergy, lSys, psiGround, blockParts.m,
data.compBlock -> blockParts.m, skips);
};
obsMatrixX_t TheBlock::obsProjectBlockOp(const obsMatrixX_t& sysOp)
{
int nextSiteM = primeToRhoBasis.cols();
primeToRhoBasis.resize(blockParts.m, d * nextSiteM);
obsMatrixX_t oSO = sysOp * primeToRhoBasis;
oSO.resize(blockParts.m * d, nextSiteM);
primeToRhoBasis.resize(blockParts.m * d, nextSiteM);
return primeToRhoBasis.adjoint() * oSO;
};
#ifdef differentScalars
obsMatrixX_t TheBlock::obsProjectBlockFreeSiteOps(const obsMatrixX_t& blockOp,
const obsMatrixX_t& siteOp)
{
int nextSiteM = primeToRhoBasis.cols();
rmMatrixX_t oDag = primeToRhoBasis.adjoint();
oDag.resize(nextSiteM * blockParts.m, d);
primeToRhoBasis.resize(blockParts.m, d * nextSiteM);
obsMatrixX_t oDagHSite = oDag * siteOp,
hSysO = blockOp * primeToRhoBasis;
primeToRhoBasis.resize(blockParts.m * d, nextSiteM);
oDagHSite.resize(nextSiteM, blockParts.m * d);
hSysO.resize(blockParts.m * d, nextSiteM);
return oDagHSite * hSysO;
};
#endif
obsMatrixX_t TheBlock::obsProjectFreeSiteOp(const obsMatrixD_t& lFreeSite)
{
int nextSiteM = primeToRhoBasis.cols();
primeToRhoBasis.resize(blockParts.m * d, nextSiteM);
rmMatrixX_t oDag = primeToRhoBasis.adjoint();
oDag.resize(nextSiteM * blockParts.m, d);
obsMatrixX_t oDagH1 = oDag * lFreeSite;
oDagH1.resize(nextSiteM, blockParts.m * d);
return oDagH1 * primeToRhoBasis;
};