forked from sherlcok314159/ML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rnn.py
472 lines (375 loc) · 16.2 KB
/
rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata
import re
import random
import os
import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
SOS_token = 0
EOS_token = 1
class Lang:
def __init__(self,name):
self.name = name
# 形如 {"hello" : 3}
self.word2index = {}
# 统计每一个单词出现的次数
self.word2count = {}
self.index2word = {0:"SOS",1:"EOS"}
# 统计训练集出现的单词数
self.n_words = 2 # SOS 和 EOS已经存在了
def addSentence(self,sentence):
# 第一行为 Go. Va !
# 前面是英语,后面是法语,中间用tab分隔
for word in sentence.split(" "):
self.addWord(word)
def addWord(self,word):
if word not in self.word2index:
self.word2index[word] = self.n_words
self.word2count[word] = 1
# 用现有的总词数作为新的单词的索引
self.index2word[self.n_words] = word
self.n_words += 1
else:
self.word2count[word] += 1
# 将Unicode字符串转换为纯ASCII, 感谢https://stackoverflow.com/a/518232/2809427
def unicodeToAscii(s):
return ''.join(
c for c in unicodedata.normalize('NFD', s)
if unicodedata.category(c) != 'Mn'
)
# 小写,修剪和删除非字母字符
def normalizeString(s):
# 转码之后变小写切除两边空白
s = unicodeToAscii(s.lower().strip())
# 匹配.!?,并在前面加空格
s = re.sub(r"([.!?])",r" \1",s)
# 将非字母和.!?的全部变为空白
s = re.sub(r"[^a-zA-Z.!?]+",r" ",s)
return s
def readLangs(lang1,lang2,reverse=False):
print("Reading lines...")
# 读取文件并分为几行
# 每一对句子最后会有个换行符\n
# lines ==> ['Go.\tVa !', 'Run!\tCours\u202f!'...]
lines = open("填自己的数据路径",encoding = "utf-8").read().strip().split("\n")
# 将每一行拆分成对并进行标准化
# pairs ==> [["go .","va !"],...]
pairs = [[normalizeString(s) for s in l.split("\t")] for l in lines]
# 反向对,实例Lang
# 源文件是先英语后法语
# 换完之后就是先法后英
if reverse:
pairs = [list(reversed(p)) for p in pairs]
input_lang = Lang(lang2)
output_lang = Lang(lang1)
else:
input_lang = Lang(lang1)
output_lang = Lang(lang2)
return input_lang,output_lang,pairs
MAX_LENGTH = 10
eng_prefixes = (
"i am ", "i m ",
"he is", "he s ",
"she is", "she s ",
"you are", "you re ",
"we are", "we re ",
"they are", "they re "
)
def filterPair(p):
return len(p[0].split(' ')) < MAX_LENGTH and \
len(p[1].split(' ')) < MAX_LENGTH and \
p[1].startswith(eng_prefixes)
# 留下符合条件的
def filterPairs(pairs):
return [pair for pair in pairs if filterPair(pair)]
def prepareData(lang1, lang2, reverse=False):
input_lang, output_lang, pairs = readLangs(lang1, lang2, reverse)
print("Read %s sentence pairs" % len(pairs))
pairs = filterPairs(pairs)
print("Trimmed to %s sentence pairs" % len(pairs))
print("Counting words...")
for pair in pairs:
input_lang.addSentence(pair[0])
output_lang.addSentence(pair[1])
print("Counted words:")
print(input_lang.name, input_lang.n_words)
print(output_lang.name, output_lang.n_words)
return input_lang, output_lang, pairs
input_lang, output_lang, pairs = prepareData('eng', 'fra', True)
# 随机输出pair对
print(random.choice(pairs))
class EncoderRNN(nn.Module):
def __init__(self, input_size, hidden_size):
# 调用父类初始化方法
super(EncoderRNN, self).__init__()
# 初始化必须的变量
self.hidden_size = hidden_size
self.embedding = nn.Embedding(input_size, hidden_size)
# gru的输入为三维,两个参数均指的是最后一维的大小
# tensor([1,1,hidden_size])
self.gru = nn.GRU(hidden_size, hidden_size)
def forward(self, input, hidden):
# embedded.size() ==> tensor([1,1,hidden_size])
# -1的好处是机器会自动计算
# 这里用view扩维的原因是gru必须接受三维的输入
embedded = self.embedding(input).view(1, 1, -1)
output = embedded
output, hidden = self.gru(output, hidden)
return output, hidden
def initHidden(self):
# 初始化隐层状态全为0
# hidden ==> tensor([1,1,hidden_size])
return torch.zeros(1, 1, self.hidden_size, device=device)
class DecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size):
super(DecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.embedding = nn.Embedding(output_size, hidden_size)
self.gru = nn.GRU(hidden_size, hidden_size)
# input_features ==> hidden_size
# output_features ==> output_size
self.out = nn.Linear(hidden_size, output_size)
# Log(Softmax(X))
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, input, hidden):
output = self.embedding(input).view(1, 1, -1)
output = F.relu(output)
output, hidden = self.gru(output, hidden)
# output.size() ==> [1,1,hidden_size]
# output的第一个1是我们用以适合gru输入扩充的
# 所以用output[0]选取前面的
output = self.softmax(self.out(output[0]))
return output, hidden
def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
class AttnDecoderRNN(nn.Module):
def __init__(self, hidden_size, output_size, dropout_p=0.1, max_length=MAX_LENGTH):
super(AttnDecoderRNN, self).__init__()
self.hidden_size = hidden_size
self.output_size = output_size
self.dropout_p = dropout_p
self.max_length = max_length
self.embedding = nn.Embedding(self.output_size, self.hidden_size)
# 因为会将prev_hidden和embedded在最后一个维度
# 即hidden_size,进行拼接,所以要*2
# max_length用以统一不同长度的句子分配的注意力
# 最大长度句子使用所有注意力权重,较短只用前几个
self.attn = nn.Linear(self.hidden_size*2,self.max_length)
self.attn = nn.Linear(self.hidden_size * 2, self.max_length)
self.attn_combine = nn.Linear(self.hidden_size * 2, self.hidden_size)
self.dropout = nn.Dropout(self.dropout_p)
self.gru = nn.GRU(self.hidden_size, self.hidden_size)
self.out = nn.Linear(self.hidden_size, self.output_size)
def forward(self, input, hidden, encoder_outputs):
embedded = self.embedding(input).view(1, 1, -1)
embedded = self.dropout(embedded)
# 因为第一维只是适应模型输入扩充的
# 所以拼接时,只需要取后面两个维度
attn_weights = F.softmax(
self.attn(torch.cat((embedded[0], hidden[0]), 1)), dim=1)
# bmm ==> batch matrix multiplication
# e.g. a.size() ==> tensor([1,2,3])
# b.size() ==> tensor([1,3,4])
# torch.bmm(a,b).size() ==> tensor([1,2,4])
# 第一维度不变,其他两维就当作矩阵做乘法
# unsqueeze(0)用以在在第一维扩充维度
# attn_applied赋予encoder_outputs不同部分不同权重
attn_applied = torch.bmm(attn_weights.unsqueeze(0),
encoder_outputs.unsqueeze(0))
output = torch.cat((embedded[0], attn_applied[0]), 1)
output = self.attn_combine(output).unsqueeze(0)
output = F.relu(output)
output, hidden = self.gru(output, hidden)
output = F.log_softmax(self.out(output[0]), dim=1)
return output, hidden, attn_weights
def initHidden(self):
return torch.zeros(1, 1, self.hidden_size, device=device)
def indexesFromSentence(lang, sentence):
return [lang.word2index[word] for word in sentence.split(' ')]
def tensorFromSentence(lang, sentence):
indexes = indexesFromSentence(lang, sentence)
indexes.append(EOS_token)
return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)
def tensorsFromPair(pair):
input_tensor = tensorFromSentence(input_lang, pair[0])
target_tensor = tensorFromSentence(output_lang, pair[1])
return (input_tensor, target_tensor)
teacher_forcing_ratio = 0.5
def train(input_tensor,target_tensor,encoder,decoder,encoder_optimizer,decoder_optimizer,criterion,max_length=MAX_LENGTH):
# 初始化隐藏状态
encoder_hidden = encoder.initHidden()
# 梯度清零
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
input_length = input_tensor.size(0)
target_length = target_tensor.size(0)
# 初始化,等会替换
encoder_outputs = torch.zeros(max_length,encoder.hidden_size,device=device)
loss = 0
for ei in range(input_length):
encoder_output,encoder_hidden = encoder(
input_tensor[ei],encoder_hidden)
# encoder_output.size() ==> tensor([1,1,hidden_size])
encoder_outputs[ei] = encoder_output[0,0]
# 输入为<sos>,decoder初始隐藏状态为encoder的
decoder_input = torch.tensor([[SOS_token]],device=device)
decoder_hidden = encoder_hidden
# 随机决定是否采用teacher_forcing
use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
if use_teacher_forcing:
# 若采用,label作为下一个时间步输入
for di in range(target_length):
decoder_output,decoder_hidden,decoder_attention = decoder(
decoder_input,decoder_hidden,encoder_outputs)
loss += criterion(decoder_output,target_tensor[di])
else:
# 若不用,则用预测出的作为Decoder下一个输入
for di in range(target_length):
decoder_output,decoder_hidden,decoder_attention = decoder(
decoder_input,decoder_hidden,encoder_outputs)
# topk代表在所给维度上输出最大值
# 参数代表输出前多少个最大值
# 若为1,就是最大值
# topv,topi 分别为前n个最大值和其对应的索引
topv,topi = decoder_output.topk(1)
# squeeze()进行降维
# detach将与这个变量相关的从计算图中剥离
# 从而减少内存的开销
decoder_input = topi.squeeze().detach()
loss += criterion(decoder_output,target_tensor[di])
# 若某个时间步输入为<eos>,则停止
if decoder_input.item() == EOS_token:
break
loss.backward()
# 参数更新
encoder_optimizer.step()
decoder_optimizer.step()
# 返回平均loss
return loss.item() / target_length
import time
import math
def asMinutes(s):
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
def timeSince(since, percent):
now = time.time()
s = now - since
es = s / (percent)
rs = es - s
return '%s (- %s)' % (asMinutes(s), asMinutes(rs))
def trainIters(encoder,decoder,n_iters,print_every=1000,plot_every=100,learning_rate=0.01):
start = time.time()
plot_losses = []
# 每一次重置
print_loss_total = 0
plot_loss_total = 0
# 定义优化器
encoder_optimizer = optim.SGD(encoder.parameters(),lr=learning_rate)
decoder_optimizer = optim.SGD(decoder.parameters(),lr=learning_rate)
# random.choice(pairs)随机选择
training_pairs = [tensorsFromPair(random.choice(pairs)) for i in range(n_iters)]
criterion = nn.NLLLoss()
for iter in range(1,n_iters + 1):
training_pair = training_pairs[iter-1]
input_tensor = training_pair[0]
target_tensor = training_pair[1]
loss = train(input_tensor, target_tensor, encoder,
decoder, encoder_optimizer, decoder_optimizer, criterion)
print_loss_total += loss
plot_loss_total += loss
# 若能整除,就打印此时训练进度
if iter % print_every == 0:
print_loss_avg = print_loss_total / print_every
print_loss_total = 0
print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),
iter, iter / n_iters * 100, print_loss_avg))
# 若能整除,则把平均损失加入plot_loss
# 为后期画图做准备
if iter % plot_every == 0:
plot_loss_avg = plot_loss_total / plot_every
plot_losses.append(plot_loss_avg)
plot_loss_total = 0
showPlot(plot_losses)
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy as np
def showPlot(points):
plt.figure()
fig, ax = plt.subplots()
# this locator puts ticks at regular intervals
loc = ticker.MultipleLocator(base=0.2)
ax.yaxis.set_major_locator(loc)
plt.plot(points)
def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH):
# 评估时停止梯度跟踪,减少内存
with torch.no_grad():
input_tensor = tensorFromSentence(input_lang, sentence)
input_length = input_tensor.size()[0]
encoder_hidden = encoder.initHidden()
encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
for ei in range(input_length):
encoder_output, encoder_hidden = encoder(input_tensor[ei],encoder_hidden)
encoder_outputs[ei] += encoder_output[0, 0]
decoder_input = torch.tensor([[SOS_token]], device=device) # SOS
decoder_hidden = encoder_hidden
decoded_words = []
decoder_attentions = torch.zeros(max_length, max_length)
for di in range(max_length):
decoder_output, decoder_hidden, decoder_attention = decoder(
decoder_input, decoder_hidden, encoder_outputs)
decoder_attentions[di] = decoder_attention.data
topv, topi = decoder_output.data.topk(1)
if topi.item() == EOS_token:
decoded_words.append('<EOS>')
break
else:
decoded_words.append(output_lang.index2word[topi.item()])
decoder_input = topi.squeeze().detach()
return decoded_words, decoder_attentions[:di + 1]
def evaluateRandomly(encoder, decoder, n=10):
for i in range(n):
pair = random.choice(pairs)
print('>', pair[0])
print('=', pair[1])
output_words, attentions = evaluate(encoder, decoder, pair[0])
output_sentence = ' '.join(output_words)
print('<', output_sentence)
print('')
hidden_size = 256
encoder1 = EncoderRNN(input_lang.n_words, hidden_size).to(device)
attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p=0.1).to(device)
trainIters(encoder1, attn_decoder1, 75000, print_every=5000)
#保留网络参数,注意是实例化之后的
torch.save(encoder1.state_dict(),"encoder_parameters")
torch.save(attn_decoder1.state_dict(),"decoder_parameters")
# 注意力可视化
def showAttention(input_sentence, output_words, attentions):
# 用colorbar设置图
fig = plt.figure()
ax = fig.add_subplot(111)
# attentions出来之后是tensor形式,需要转换为numpy
cax = ax.matshow(attentions.numpy(), cmap='bone')
fig.colorbar(cax)
# 设置坐标
ax.set_xticklabels([''] + input_sentence.split(' ') +
['<EOS>'], rotation=90)
ax.set_yticklabels([''] + output_words)
# 在每个刻度处显示标签,刻度为1的倍数
ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
plt.show()
def evaluateAndShowAttention(input_sentence):
output_words, attentions = evaluate(
encoder1, attn_decoder1, input_sentence)
print('input =', input_sentence)
print('output =', ' '.join(output_words))
showAttention(input_sentence, output_words, attentions)
evaluateAndShowAttention("elle a cinq ans de moins que moi .")
evaluateAndShowAttention("elle est trop petit .")
evaluateAndShowAttention("je ne crains pas de mourir .")
evaluateAndShowAttention("c est un jeune directeur plein de talent .")