Skip to content

Latest commit

 

History

History
34 lines (24 loc) · 1.46 KB

README.md

File metadata and controls

34 lines (24 loc) · 1.46 KB

Codebase for Hierarchical k-Step Latent (HKSL)

Prerequisites

This codebase requires the MuJoCo physics engine [1].

Training an HKSL Agent

An HKSL agent can be trained by running the player.py script.

For example, if we wish to train an agent in Cartpole, Swingup with no distractors, run:

python3 player.py --env cartpole_swingup

To run Cartpole, Swingup with easy color distractors, run:

python3 player.py --env gdc-cartpole_swingup__easy__dynamic --distractors color

To run Cartpole, Swingup with medium camera distractors, run:

python3 player.py --env gdc-cartpole_swingup__medium__dynamic --distractors camera

Helpful Sources

We make use of the distracting control suite [2] code, which can be found in the /distracting_control folder.

Our training loop and agent class structure is based off of SAC-AE's [3] codebase.

References

[1] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033, 2012.

[2] . Stone, O. Ramirez, K. Konolige, and R. Jonschkowski. The distracting control suite – a challenging benchmark for reinforcement learning from pixels. arXiv preprint arXiv:2101.02722, 2021.

[3] D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus. Improving sample efficiency in model-free reinforcement learning from images. arXiv preprint arXiv:1910.01741, 2020.