-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathask_attack.py
262 lines (231 loc) · 9.53 KB
/
ask_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from sklearn.neighbors import NearestNeighbors
import numpy as np
import torch
import torch.nn as nn
from ask_loss import ASKLoss
class ASKAttack:
def __init__(
self,
model,
train_data,
train_targets,
n_class=10,
n_neighbors=5,
class_samp_size=None,
eps=8 / 255,
step_size=2 / 255,
max_iter=10,
random_init=True,
metric="l2",
batch_size=20,
hidden_layers=-1,
kappa=1,
temperature=0.1,
random_seed=1234,
device=torch.device("cpu")
):
self.class_samp_size = class_samp_size
self.n_class = n_class
self.metric = metric
self.batch_size = batch_size
self.hidden_layers = hidden_layers
self.device = device
self._model = self._wrap_model(model)
self._model.to(self.device)
self._model.eval()
self.hidden_layers = self._model.hidden_layers
self.random_seed = random_seed
self.train_data = self._samp_data(train_data, train_targets)
self.n_neighbors = n_neighbors
self._nns = self._build_nns()
self.temperature = [temperature for _ in range(len(self.hidden_layers))] \
if isinstance(temperature, (int, float)) else temperature
self.kappa = [kappa for _ in range(len(self.hidden_layers))] \
if isinstance(kappa, (int, float)) else kappa
self.ask_loss = [ASKLoss(temperature=t, metric=metric, type="class-wise") for t in self.temperature]
self.eps = eps
self.step_size = step_size
self.max_iter = max_iter
self.random_init = random_init
def _samp_data(
self,
train_data,
train_targets,
):
if self.class_samp_size is None:
return [train_data[train_targets == i] for i in range(self.n_class)]
else:
np.random.seed(self.random_seed)
class_indices = []
for i in range(self.n_class):
inds = np.where(train_targets == i)[0]
subset = np.random.choice(inds, size=self.class_samp_size, replace=False)
class_indices.append(subset)
return [train_data[subset] for subset in class_indices]
def _get_hidden_repr(self, x, return_targets=False):
hidden_reprs = []
targets = None
if return_targets:
outs = []
for i in range(0, x.size(0), self.batch_size):
x_batch = x[i:i + self.batch_size]
with torch.no_grad():
if return_targets:
hidden_reprs_batch, outs_batch = self._model(x_batch.to(self.device))
else:
hidden_reprs_batch, _ = self._model(x_batch.to(self.device))
if self.metric == "cosine":
hidden_reprs_batch = [
hidden_repr_batch / hidden_repr_batch.pow(2).sum(dim=-1, keepdim=True).sqrt()
for hidden_repr_batch in hidden_reprs_batch
]
hidden_reprs_batch = [hidden_repr_batch.cpu() for hidden_repr_batch in hidden_reprs_batch]
hidden_reprs.append(hidden_reprs_batch)
if return_targets:
outs.append(outs_batch)
hidden_reprs = [
torch.cat([hidden_batch[i] for hidden_batch in hidden_reprs], dim=0)
for i in range(len(self.hidden_layers))
]
if return_targets:
outs = np.concatenate(outs, axis=0)
targets = outs.argmax(axis=1)
return hidden_reprs, targets
def _wrap_model(self, model):
class ModelWrapper(nn.Module):
def __init__(self, model, hidden_layers):
super(ModelWrapper, self).__init__()
self._model = model
self.hidden_mappings = []
start_layer = 0
if hasattr(model, "feature"):
start_layer = 1
self.hidden_mappings.append(model.feature)
self.hidden_mappings.extend([
m[1] for m in model.named_children()
if isinstance(m[1], nn.Sequential) and "layer" in m[0]
])
if hidden_layers == -1:
self.hidden_layers = list(range(len(self.hidden_mappings)))
else:
self.hidden_layers = hidden_layers
self.hidden_layers = [hl + start_layer for hl in hidden_layers]
self.classifier = self._model.classifier
def forward(self, x):
hidden_reprs = []
for mp in self.hidden_mappings:
x = mp(x)
hidden_reprs.append(x)
out = self.classifier(x)
return [hidden_reprs[i].flatten(start_dim=1) for i in self.hidden_layers], out
return ModelWrapper(model, self.hidden_layers)
def _build_nns(self):
nns = [[] for _ in range(len(self.hidden_layers))]
for class_data in self.train_data:
hidden_reprs, _ = self._get_hidden_repr(class_data)
for i, hidden_repr in enumerate(hidden_reprs):
nns[i].append(NearestNeighbors(n_neighbors=self.n_neighbors, n_jobs=-1).fit(hidden_repr))
return nns
def attack(self, x, y, x_refs, x_adv=None):
if x_adv is None:
if self.random_init:
x_adv = 2 * self.eps * (torch.rand_like(x) - 0.5) + x
x_adv = x_adv.clamp(0.0, 1.0)
else:
x_adv = torch.clone(x).detach()
x_adv.requires_grad_(True)
hidden_repr_adv, _ = self._model(x_adv)
loss = 0
for ask_loss, hidden_repr, x_ref, kappa in zip(self.ask_loss, hidden_repr_adv, x_refs, self.kappa):
if self.metric == "cosine":
hidden_repr = hidden_repr / hidden_repr.pow(2).sum(dim=1, keepdim=True).sqrt()
loss += kappa * ask_loss(
hidden_repr,
y,
x_ref.to(x),
torch.arange(self.n_class).repeat_interleave(self.n_neighbors).to(x)
)
grad = torch.autograd.grad(loss, x_adv)[0]
pert = self.step_size * grad.sign()
x_adv = (x_adv + pert).clamp(0.0, 1.0).detach()
pert = (x_adv - x).clamp(-self.eps, self.eps)
return x + pert
def _get_nns(self, x):
hidden_reprs, _ = self._get_hidden_repr(x)
nn_reprs = []
for i, hidden_repr, nns in zip(range(len(self.hidden_layers)), hidden_reprs, self._nns):
nn_inds = [torch.LongTensor(nn.kneighbors(hidden_repr, return_distance=False)) for nn in nns]
nn_repr = [class_data[nn_ind] for class_data, nn_ind in zip(self.train_data, nn_inds)]
nn_reprs.append(self._get_hidden_repr(torch.cat(nn_repr, dim=1).reshape(-1, *x.shape[1:]))[0][i])
return [nn_repr.reshape(x.size(0), self.n_neighbors*self.n_class, -1) for nn_repr in nn_reprs]
def generate(self, x, y=None):
x_adv = []
for i in range(0, x.size(0), self.batch_size):
x_batch = x[i: i + self.batch_size].to(self.device)
nn_reprs_batch = self._get_nns(x_batch)
if y is None:
y_batch = self._model(x_batch)
if isinstance(y_batch, tuple):
y_batch = y_batch[-1]
y_batch = y_batch.max(dim=-1)[1].to(self.device)
else:
y_batch = y[i: i + self.batch_size].to(self.device)
for j in range(self.max_iter):
if j == 0:
x_adv_batch = self.attack(x_batch, y_batch, nn_reprs_batch)
else:
x_adv_batch = self.attack(x_batch, y_batch, nn_reprs_batch, x_adv_batch)
x_adv.append(x_adv_batch)
return torch.cat(x_adv, dim=0).cpu()
if __name__ == "__main__":
from dknn import DKNN
from models.vgg import VGG16
from data_utils import get_dataloaders
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = VGG16()
model.load_state_dict(torch.load("./checkpoints/cifar10_vgg16.pt")["model_state"])
model.to(device)
model.eval()
trainloader, testloader = get_dataloaders(
"cifar10",
root="./datasets",
batch_size=100,
download=False,
augmentation=False,
train_shuffle=False,
num_workers=1
)
train_data, train_targets = [], []
for x, y in trainloader:
train_data.append(x)
train_targets.append(y)
train_data = torch.cat(train_data, dim=0)
train_targets = torch.cat(train_targets)
ask_attack = ASKAttack(
model,
train_data,
train_targets,
hidden_layers=[3, ],
max_iter=20,
metric="cosine",
class_samp_size=100,
device=device
)
dknn = DKNN(
model,
torch.cat(ask_attack.train_data, dim=0),
torch.arange(ask_attack.n_class).repeat_interleave(ask_attack.class_samp_size),
hidden_layers=ask_attack.hidden_layers,
metric=ask_attack.metric,
device=device
)
x_batch, y_batch = next(iter(testloader))
pred_dknn_clean = dknn.predict(x_batch)
print("Clean accuracy of DkNN is {}".format(
(pred_dknn_clean.argmax(axis=1) == y_batch.numpy()).astype("float").mean()
))
x_adv = ask_attack.generate(x_batch, y_batch)
pred_dknn_adv = dknn.predict(x_adv)
print("Adversarial accuracy of DkNN is {}".format(
(pred_dknn_adv.argmax(axis=1) == y_batch.numpy()).astype("float").mean()
))