forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nvQuaternion.h
438 lines (337 loc) · 10.9 KB
/
nvQuaternion.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
/*
* Copyright 1993-2015 NVIDIA Corporation. All rights reserved.
*
* Please refer to the NVIDIA end user license agreement (EULA) associated
* with this source code for terms and conditions that govern your use of
* this software. Any use, reproduction, disclosure, or distribution of
* this software and related documentation outside the terms of the EULA
* is strictly prohibited.
*
*/
//
// Template math library for common 3D functionality
//
// nvQuaterion.h - quaternion template and utility functions
//
// This code is in part deriver from glh, a cross platform glut helper library.
// The copyright for glh follows this notice.
//
// Copyright (c) NVIDIA Corporation. All rights reserved.
////////////////////////////////////////////////////////////////////////////////
/*
Copyright (c) 2000 Cass Everitt
Copyright (c) 2000 NVIDIA Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.
* The names of contributors to this software may not be used
to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
Cass Everitt - [email protected]
*/
#ifndef NV_QUATERNION_H
#define NV_QUATERNION_H
namespace nv {
template <class T>
class vec2;
template <class T>
class vec3;
template <class T>
class vec4;
////////////////////////////////////////////////////////////////////////////////
//
// Quaternion
//
////////////////////////////////////////////////////////////////////////////////
template <class T>
class quaternion {
public:
quaternion() : x(0.0), y(0.0), z(0.0), w(0.0) {}
quaternion(const T v[4]) { set_value(v); }
quaternion(T q0, T q1, T q2, T q3) { set_value(q0, q1, q2, q3); }
quaternion(const matrix4<T> &m) { set_value(m); }
quaternion(const vec3<T> &axis, T radians) { set_value(axis, radians); }
quaternion(const vec3<T> &rotateFrom, const vec3<T> &rotateTo) {
set_value(rotateFrom, rotateTo);
}
quaternion(const vec3<T> &from_look, const vec3<T> &from_up,
const vec3<T> &to_look, const vec3<T> &to_up) {
set_value(from_look, from_up, to_look, to_up);
}
const T *get_value() const { return &_array[0]; }
void get_value(T &q0, T &q1, T &q2, T &q3) const {
q0 = _array[0];
q1 = _array[1];
q2 = _array[2];
q3 = _array[3];
}
quaternion &set_value(T q0, T q1, T q2, T q3) {
_array[0] = q0;
_array[1] = q1;
_array[2] = q2;
_array[3] = q3;
return *this;
}
void get_value(vec3<T> &axis, T &radians) const {
radians = T(acos(_array[3]) * T(2.0));
if (radians == T(0.0)) {
axis = vec3<T>(0.0, 0.0, 1.0);
} else {
axis[0] = _array[0];
axis[1] = _array[1];
axis[2] = _array[2];
axis = normalize(axis);
}
}
void get_value(matrix4<T> &m) const {
T s, xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz;
T norm = _array[0] * _array[0] + _array[1] * _array[1] +
_array[2] * _array[2] + _array[3] * _array[3];
s = (norm == T(0.0)) ? T(0.0) : (T(2.0) / norm);
xs = _array[0] * s;
ys = _array[1] * s;
zs = _array[2] * s;
wx = _array[3] * xs;
wy = _array[3] * ys;
wz = _array[3] * zs;
xx = _array[0] * xs;
xy = _array[0] * ys;
xz = _array[0] * zs;
yy = _array[1] * ys;
yz = _array[1] * zs;
zz = _array[2] * zs;
m(0, 0) = T(T(1.0) - (yy + zz));
m(1, 0) = T(xy + wz);
m(2, 0) = T(xz - wy);
m(0, 1) = T(xy - wz);
m(1, 1) = T(T(1.0) - (xx + zz));
m(2, 1) = T(yz + wx);
m(0, 2) = T(xz + wy);
m(1, 2) = T(yz - wx);
m(2, 2) = T(T(1.0) - (xx + yy));
m(3, 0) = m(3, 1) = m(3, 2) = m(0, 3) = m(1, 3) = m(2, 3) = T(0.0);
m(3, 3) = T(1.0);
}
quaternion &set_value(const T *qp) {
for (int i = 0; i < 4; i++) {
_array[i] = qp[i];
}
return *this;
}
quaternion &set_value(const matrix4<T> &m) {
T tr, s;
int i, j, k;
const int nxt[3] = {1, 2, 0};
tr = m(0, 0) + m(1, 1) + m(2, 2);
if (tr > T(0)) {
s = T(sqrt(tr + m(3, 3)));
_array[3] = T(s * 0.5);
s = T(0.5) / s;
_array[0] = T((m(1, 2) - m(2, 1)) * s);
_array[1] = T((m(2, 0) - m(0, 2)) * s);
_array[2] = T((m(0, 1) - m(1, 0)) * s);
} else {
i = 0;
if (m(1, 1) > m(0, 0)) {
i = 1;
}
if (m(2, 2) > m(i, i)) {
i = 2;
}
j = nxt[i];
k = nxt[j];
s = T(sqrt((m(i, j) - (m(j, j) + m(k, k))) + T(1.0)));
_array[i] = T(s * 0.5);
s = T(0.5 / s);
_array[3] = T((m(j, k) - m(k, j)) * s);
_array[j] = T((m(i, j) + m(j, i)) * s);
_array[k] = T((m(i, k) + m(k, i)) * s);
}
return *this;
}
quaternion &set_value(const vec3<T> &axis, T theta) {
T sqnorm = square_norm(axis);
if (sqnorm == T(0.0)) {
// axis too small.
x = y = z = T(0.0);
w = T(1.0);
} else {
theta *= T(0.5);
T sin_theta = T(sin(theta));
if (sqnorm != T(1)) {
sin_theta /= T(sqrt(sqnorm));
}
x = sin_theta * axis[0];
y = sin_theta * axis[1];
z = sin_theta * axis[2];
w = T(cos(theta));
}
return *this;
}
quaternion &set_value(const vec3<T> &rotateFrom, const vec3<T> &rotateTo) {
vec3<T> p1, p2;
T alpha;
p1 = normalize(rotateFrom);
p2 = normalize(rotateTo);
alpha = dot(p1, p2);
if (alpha == T(1.0)) {
*this = quaternion();
return *this;
}
// ensures that the anti-parallel case leads to a positive dot
if (alpha == T(-1.0)) {
vec3<T> v;
if (p1[0] != p1[1] || p1[0] != p1[2]) {
v = vec3<T>(p1[1], p1[2], p1[0]);
} else {
v = vec3<T>(-p1[0], p1[1], p1[2]);
}
v -= p1 * dot(p1, v);
v = normalize(v);
set_value(v, T(3.1415926));
return *this;
}
p1 = normalize(cross(p1, p2));
set_value(p1, T(acos(alpha)));
return *this;
}
quaternion &set_value(const vec3<T> &from_look, const vec3<T> &from_up,
const vec3<T> &to_look, const vec3<T> &to_up) {
quaternion r_look = quaternion(from_look, to_look);
vec3<T> rotated_from_up(from_up);
r_look.mult_vec(rotated_from_up);
quaternion r_twist = quaternion(rotated_from_up, to_up);
*this = r_twist;
*this *= r_look;
return *this;
}
quaternion &operator*=(const quaternion<T> &qr) {
quaternion ql(*this);
w = ql.w * qr.w - ql.x * qr.x - ql.y * qr.y - ql.z * qr.z;
x = ql.w * qr.x + ql.x * qr.w + ql.y * qr.z - ql.z * qr.y;
y = ql.w * qr.y + ql.y * qr.w + ql.z * qr.x - ql.x * qr.z;
z = ql.w * qr.z + ql.z * qr.w + ql.x * qr.y - ql.y * qr.x;
return *this;
}
friend quaternion normalize(const quaternion<T> &q) {
quaternion r(q);
T rnorm = T(1.0) / T(sqrt(q.w * q.w + q.x * q.x + q.y * q.y + q.z * q.z));
r.x *= rnorm;
r.y *= rnorm;
r.z *= rnorm;
r.w *= rnorm;
}
friend quaternion<T> conjugate(const quaternion<T> &q) {
quaternion<T> r(q);
r._array[0] *= T(-1.0);
r._array[1] *= T(-1.0);
r._array[2] *= T(-1.0);
return r;
}
friend quaternion<T> inverse(const quaternion<T> &q) { return conjugate(q); }
//
// Quaternion multiplication with cartesian vector
// v' = q*v*q(star)
//
void mult_vec(const vec3<T> &src, vec3<T> &dst) const {
T v_coef = w * w - x * x - y * y - z * z;
T u_coef = T(2.0) * (src[0] * x + src[1] * y + src[2] * z);
T c_coef = T(2.0) * w;
dst.v[0] =
v_coef * src.v[0] + u_coef * x + c_coef * (y * src.v[2] - z * src.v[1]);
dst.v[1] =
v_coef * src.v[1] + u_coef * y + c_coef * (z * src.v[0] - x * src.v[2]);
dst.v[2] =
v_coef * src.v[2] + u_coef * z + c_coef * (x * src.v[1] - y * src.v[0]);
}
void mult_vec(vec3<T> &src_and_dst) const {
mult_vec(vec3<T>(src_and_dst), src_and_dst);
}
void scale_angle(T scaleFactor) {
vec3<T> axis;
T radians;
get_value(axis, radians);
radians *= scaleFactor;
set_value(axis, radians);
}
friend quaternion<T> slerp(const quaternion<T> &p, const quaternion<T> &q,
T alpha) {
quaternion r;
T cos_omega = p.x * q.x + p.y * q.y + p.z * q.z + p.w * q.w;
// if B is on opposite hemisphere from A, use -B instead
int bflip;
if ((bflip = (cos_omega < T(0)))) {
cos_omega = -cos_omega;
}
// complementary interpolation parameter
T beta = T(1) - alpha;
if (cos_omega >= T(1)) {
return p;
}
T omega = T(acos(cos_omega));
T one_over_sin_omega = T(1.0) / T(sin(omega));
beta = T(sin(omega * beta) * one_over_sin_omega);
alpha = T(sin(omega * alpha) * one_over_sin_omega);
if (bflip) {
alpha = -alpha;
}
r.x = beta * p._array[0] + alpha * q._array[0];
r.y = beta * p._array[1] + alpha * q._array[1];
r.z = beta * p._array[2] + alpha * q._array[2];
r.w = beta * p._array[3] + alpha * q._array[3];
return r;
}
T &operator[](int i) { return _array[i]; }
const T &operator[](int i) const { return _array[i]; }
friend bool operator==(const quaternion<T> &lhs, const quaternion<T> &rhs) {
bool r = true;
for (int i = 0; i < 4; i++) {
r &= lhs._array[i] == rhs._array[i];
}
return r;
}
friend bool operator!=(const quaternion<T> &lhs, const quaternion<T> &rhs) {
bool r = true;
for (int i = 0; i < 4; i++) {
r &= lhs._array[i] == rhs._array[i];
}
return r;
}
friend quaternion<T> operator*(const quaternion<T> &lhs,
const quaternion<T> &rhs) {
quaternion r(lhs);
r *= rhs;
return r;
}
union {
struct {
T x;
T y;
T z;
T w;
};
T _array[4];
};
};
};
#endif