forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
simpleOccupancy.cu
240 lines (197 loc) · 7.88 KB
/
simpleOccupancy.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <iostream>
#include <helper_cuda.h> // helper functions for CUDA error check
const int manualBlockSize = 32;
////////////////////////////////////////////////////////////////////////////////
// Test kernel
//
// This kernel squares each array element. Each thread addresses
// himself with threadIdx and blockIdx, so that it can handle any
// execution configuration, including anything the launch configurator
// API suggests.
////////////////////////////////////////////////////////////////////////////////
__global__ void square(int *array, int arrayCount) {
extern __shared__ int dynamicSmem[];
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < arrayCount) {
array[idx] *= array[idx];
}
}
////////////////////////////////////////////////////////////////////////////////
// Potential occupancy calculator
//
// The potential occupancy is calculated according to the kernel and
// execution configuration the user desires. Occupancy is defined in
// terms of active blocks per multiprocessor, and the user can convert
// it to other metrics.
//
// This wrapper routine computes the occupancy of kernel, and reports
// it in terms of active warps / maximum warps per SM.
////////////////////////////////////////////////////////////////////////////////
static double reportPotentialOccupancy(void *kernel, int blockSize,
size_t dynamicSMem) {
int device;
cudaDeviceProp prop;
int numBlocks;
int activeWarps;
int maxWarps;
double occupancy;
checkCudaErrors(cudaGetDevice(&device));
checkCudaErrors(cudaGetDeviceProperties(&prop, device));
checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor(
&numBlocks, kernel, blockSize, dynamicSMem));
activeWarps = numBlocks * blockSize / prop.warpSize;
maxWarps = prop.maxThreadsPerMultiProcessor / prop.warpSize;
occupancy = (double)activeWarps / maxWarps;
return occupancy;
}
////////////////////////////////////////////////////////////////////////////////
// Occupancy-based launch configurator
//
// The launch configurator, cudaOccupancyMaxPotentialBlockSize and
// cudaOccupancyMaxPotentialBlockSizeVariableSMem, suggests a block
// size that achieves the best theoretical occupancy. It also returns
// the minimum number of blocks needed to achieve the occupancy on the
// whole device.
//
// This launch configurator is purely occupancy-based. It doesn't
// translate directly to performance, but the suggestion should
// nevertheless be a good starting point for further optimizations.
//
// This function configures the launch based on the "automatic"
// argument, records the runtime, and reports occupancy and runtime.
////////////////////////////////////////////////////////////////////////////////
static int launchConfig(int *array, int arrayCount, bool automatic) {
int blockSize;
int minGridSize;
int gridSize;
size_t dynamicSMemUsage = 0;
cudaEvent_t start;
cudaEvent_t end;
float elapsedTime;
double potentialOccupancy;
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&end));
if (automatic) {
checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(
&minGridSize, &blockSize, (void *)square, dynamicSMemUsage,
arrayCount));
std::cout << "Suggested block size: " << blockSize << std::endl
<< "Minimum grid size for maximum occupancy: " << minGridSize
<< std::endl;
} else {
// This block size is too small. Given limited number of
// active blocks per multiprocessor, the number of active
// threads will be limited, and thus unable to achieve maximum
// occupancy.
//
blockSize = manualBlockSize;
}
// Round up
//
gridSize = (arrayCount + blockSize - 1) / blockSize;
// Launch and profile
//
checkCudaErrors(cudaEventRecord(start));
square<<<gridSize, blockSize, dynamicSMemUsage>>>(array, arrayCount);
checkCudaErrors(cudaEventRecord(end));
checkCudaErrors(cudaDeviceSynchronize());
// Calculate occupancy
//
potentialOccupancy =
reportPotentialOccupancy((void *)square, blockSize, dynamicSMemUsage);
std::cout << "Potential occupancy: " << potentialOccupancy * 100 << "%"
<< std::endl;
// Report elapsed time
//
checkCudaErrors(cudaEventElapsedTime(&elapsedTime, start, end));
std::cout << "Elapsed time: " << elapsedTime << "ms" << std::endl;
return 0;
}
////////////////////////////////////////////////////////////////////////////////
// The test
//
// The test generates an array and squares it with a CUDA kernel, then
// verifies the result.
////////////////////////////////////////////////////////////////////////////////
static int test(bool automaticLaunchConfig, const int count = 1000000) {
int *array;
int *dArray;
int size = count * sizeof(int);
array = new int[count];
for (int i = 0; i < count; i += 1) {
array[i] = i;
}
checkCudaErrors(cudaMalloc(&dArray, size));
checkCudaErrors(cudaMemcpy(dArray, array, size, cudaMemcpyHostToDevice));
for (int i = 0; i < count; i += 1) {
array[i] = 0;
}
launchConfig(dArray, count, automaticLaunchConfig);
checkCudaErrors(cudaMemcpy(array, dArray, size, cudaMemcpyDeviceToHost));
checkCudaErrors(cudaFree(dArray));
// Verify the return data
//
for (int i = 0; i < count; i += 1) {
if (array[i] != i * i) {
std::cout << "element " << i << " expected " << i * i << " actual "
<< array[i] << std::endl;
return 1;
}
}
delete[] array;
return 0;
}
////////////////////////////////////////////////////////////////////////////////
// Sample Main
//
// The sample runs the test with manually configured launch and
// automatically configured launch, and reports the occupancy and
// performance.
////////////////////////////////////////////////////////////////////////////////
int main() {
int status;
std::cout << "starting Simple Occupancy" << std::endl << std::endl;
std::cout << "[ Manual configuration with " << manualBlockSize
<< " threads per block ]" << std::endl;
status = test(false);
if (status) {
std::cerr << "Test failed\n" << std::endl;
return -1;
}
std::cout << std::endl;
std::cout << "[ Automatic, occupancy-based configuration ]" << std::endl;
status = test(true);
if (status) {
std::cerr << "Test failed\n" << std::endl;
return -1;
}
std::cout << std::endl;
std::cout << "Test PASSED\n" << std::endl;
return 0;
}