forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbisect_util.cu
529 lines (466 loc) · 22 KB
/
bisect_util.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Utility / shared functionality for bisection kernels */
#ifndef _BISECT_UTIL_H_
#define _BISECT_UTIL_H_
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
// includes, project
#include "config.h"
#include "util.h"
////////////////////////////////////////////////////////////////////////////////
//! Compute the next lower power of two of n
//! @param n number for which next higher power of two is sought
////////////////////////////////////////////////////////////////////////////////
__device__ inline int floorPow2(int n) {
// early out if already power of two
if (0 == (n & (n - 1))) {
return n;
}
int exp;
frexp((float)n, &exp);
return (1 << (exp - 1));
}
////////////////////////////////////////////////////////////////////////////////
//! Compute the next higher power of two of n
//! @param n number for which next higher power of two is sought
////////////////////////////////////////////////////////////////////////////////
__device__ inline int ceilPow2(int n) {
// early out if already power of two
if (0 == (n & (n - 1))) {
return n;
}
int exp;
frexp((float)n, &exp);
return (1 << exp);
}
////////////////////////////////////////////////////////////////////////////////
//! Compute midpoint of interval [\a left, \a right] avoiding overflow if
//! possible
//! @param left left / lower limit of interval
//! @param right right / upper limit of interval
////////////////////////////////////////////////////////////////////////////////
__device__ inline float computeMidpoint(const float left, const float right) {
float mid;
if (sign_f(left) == sign_f(right)) {
mid = left + (right - left) * 0.5f;
} else {
mid = (left + right) * 0.5f;
}
return mid;
}
////////////////////////////////////////////////////////////////////////////////
//! Check if interval converged and store appropriately
//! @param addr address where to store the information of the interval
//! @param s_left shared memory storage for left interval limits
//! @param s_right shared memory storage for right interval limits
//! @param s_left_count shared memory storage for number of eigenvalues less
//! than left interval limits
//! @param s_right_count shared memory storage for number of eigenvalues less
//! than right interval limits
//! @param left lower limit of interval
//! @param right upper limit of interval
//! @param left_count eigenvalues less than \a left
//! @param right_count eigenvalues less than \a right
//! @param precision desired precision for eigenvalues
////////////////////////////////////////////////////////////////////////////////
template <class S, class T>
__device__ void storeInterval(unsigned int addr, float *s_left, float *s_right,
T *s_left_count, T *s_right_count, float left,
float right, S left_count, S right_count,
float precision) {
s_left_count[addr] = left_count;
s_right_count[addr] = right_count;
// check if interval converged
float t0 = abs(right - left);
float t1 = max(abs(left), abs(right)) * precision;
if (t0 <= max(MIN_ABS_INTERVAL, t1)) {
// compute mid point
float lambda = computeMidpoint(left, right);
// mark as converged
s_left[addr] = lambda;
s_right[addr] = lambda;
} else {
// store current limits
s_left[addr] = left;
s_right[addr] = right;
}
}
////////////////////////////////////////////////////////////////////////////////
//! Compute number of eigenvalues that are smaller than x given a symmetric,
//! real, and tridiagonal matrix
//! @param g_d diagonal elements stored in global memory
//! @param g_s superdiagonal elements stored in global memory
//! @param n size of matrix
//! @param x value for which the number of eigenvalues that are smaller is
//! seeked
//! @param tid thread identified (e.g. threadIdx.x or gtid)
//! @param num_intervals_active number of active intervals / threads that
//! currently process an interval
//! @param s_d scratch space to store diagonal entries of the tridiagonal
//! matrix in shared memory
//! @param s_s scratch space to store superdiagonal entries of the tridiagonal
//! matrix in shared memory
//! @param converged flag if the current thread is already converged (that
//! is count does not have to be computed)
////////////////////////////////////////////////////////////////////////////////
__device__ inline unsigned int computeNumSmallerEigenvals(
float *g_d, float *g_s, const unsigned int n, const float x,
const unsigned int tid, const unsigned int num_intervals_active, float *s_d,
float *s_s, unsigned int converged, cg::thread_block cta) {
float delta = 1.0f;
unsigned int count = 0;
cg::sync(cta);
// read data into shared memory
if (threadIdx.x < n) {
s_d[threadIdx.x] = *(g_d + threadIdx.x);
s_s[threadIdx.x] = *(g_s + threadIdx.x - 1);
}
cg::sync(cta);
// perform loop only for active threads
if ((tid < num_intervals_active) && (0 == converged)) {
// perform (optimized) Gaussian elimination to determine the number
// of eigenvalues that are smaller than n
for (unsigned int k = 0; k < n; ++k) {
delta = s_d[k] - x - (s_s[k] * s_s[k]) / delta;
count += (delta < 0) ? 1 : 0;
}
} // end if thread currently processing an interval
return count;
}
////////////////////////////////////////////////////////////////////////////////
//! Compute number of eigenvalues that are smaller than x given a symmetric,
//! real, and tridiagonal matrix
//! @param g_d diagonal elements stored in global memory
//! @param g_s superdiagonal elements stored in global memory
//! @param n size of matrix
//! @param x value for which the number of eigenvalues that are smaller is
//! seeked
//! @param tid thread identified (e.g. threadIdx.x or gtid)
//! @param num_intervals_active number of active intervals / threads that
//! currently process an interval
//! @param s_d scratch space to store diagonal entries of the tridiagonal
//! matrix in shared memory
//! @param s_s scratch space to store superdiagonal entries of the tridiagonal
//! matrix in shared memory
//! @param converged flag if the current thread is already converged (that
//! is count does not have to be computed)
////////////////////////////////////////////////////////////////////////////////
__device__ inline unsigned int computeNumSmallerEigenvalsLarge(
float *g_d, float *g_s, const unsigned int n, const float x,
const unsigned int tid, const unsigned int num_intervals_active, float *s_d,
float *s_s, unsigned int converged, cg::thread_block cta) {
float delta = 1.0f;
unsigned int count = 0;
unsigned int rem = n;
// do until whole diagonal and superdiagonal has been loaded and processed
for (unsigned int i = 0; i < n; i += blockDim.x) {
cg::sync(cta);
// read new chunk of data into shared memory
if ((i + threadIdx.x) < n) {
s_d[threadIdx.x] = *(g_d + i + threadIdx.x);
s_s[threadIdx.x] = *(g_s + i + threadIdx.x - 1);
}
cg::sync(cta);
if (tid < num_intervals_active) {
// perform (optimized) Gaussian elimination to determine the number
// of eigenvalues that are smaller than n
for (unsigned int k = 0; k < min(rem, blockDim.x); ++k) {
delta = s_d[k] - x - (s_s[k] * s_s[k]) / delta;
// delta = (abs( delta) < (1.0e-10)) ? -(1.0e-10) : delta;
count += (delta < 0) ? 1 : 0;
}
} // end if thread currently processing an interval
rem -= blockDim.x;
}
return count;
}
////////////////////////////////////////////////////////////////////////////////
//! Store all non-empty intervals resulting from the subdivision of the interval
//! currently processed by the thread
//! @param addr base address for storing intervals
//! @param num_threads_active number of threads / intervals in current sweep
//! @param s_left shared memory storage for left interval limits
//! @param s_right shared memory storage for right interval limits
//! @param s_left_count shared memory storage for number of eigenvalues less
//! than left interval limits
//! @param s_right_count shared memory storage for number of eigenvalues less
//! than right interval limits
//! @param left lower limit of interval
//! @param mid midpoint of interval
//! @param right upper limit of interval
//! @param left_count eigenvalues less than \a left
//! @param mid_count eigenvalues less than \a mid
//! @param right_count eigenvalues less than \a right
//! @param precision desired precision for eigenvalues
//! @param compact_second_chunk shared mem flag if second chunk is used and
//! ergo requires compaction
//! @param s_compaction_list_exc helper array for stream compaction,
//! s_compaction_list_exc[tid] = 1 when the
//! thread generated two child intervals
//! @is_active_interval mark is thread has a second non-empty child interval
////////////////////////////////////////////////////////////////////////////////
template <class S, class T>
__device__ void storeNonEmptyIntervals(
unsigned int addr, const unsigned int num_threads_active, float *s_left,
float *s_right, T *s_left_count, T *s_right_count, float left, float mid,
float right, const S left_count, const S mid_count, const S right_count,
float precision, unsigned int &compact_second_chunk,
T *s_compaction_list_exc, unsigned int &is_active_second) {
// check if both child intervals are valid
if ((left_count != mid_count) && (mid_count != right_count)) {
// store the left interval
storeInterval(addr, s_left, s_right, s_left_count, s_right_count, left, mid,
left_count, mid_count, precision);
// mark that a second interval has been generated, only stored after
// stream compaction of second chunk
is_active_second = 1;
s_compaction_list_exc[threadIdx.x] = 1;
atomicExch(&compact_second_chunk, 1);
} else {
// only one non-empty child interval
// mark that no second child
is_active_second = 0;
s_compaction_list_exc[threadIdx.x] = 0;
// store the one valid child interval
if (left_count != mid_count) {
storeInterval(addr, s_left, s_right, s_left_count, s_right_count, left,
mid, left_count, mid_count, precision);
} else {
storeInterval(addr, s_left, s_right, s_left_count, s_right_count, mid,
right, mid_count, right_count, precision);
}
}
}
////////////////////////////////////////////////////////////////////////////////
//! Create indices for compaction, that is process \a s_compaction_list_exc
//! which is 1 for intervals that generated a second child and 0 otherwise
//! and create for each of the non-zero elements the index where the new
//! interval belongs to in a compact representation of all generated second
//! childs
//! @param s_compaction_list_exc list containing the flags which threads
//! generated two children
//! @param num_threads_compaction number of threads to employ for compaction
////////////////////////////////////////////////////////////////////////////////
template <class T>
__device__ void createIndicesCompaction(T *s_compaction_list_exc,
unsigned int num_threads_compaction,
cg::thread_block cta) {
unsigned int offset = 1;
const unsigned int tid = threadIdx.x;
// higher levels of scan tree
for (int d = (num_threads_compaction >> 1); d > 0; d >>= 1) {
cg::sync(cta);
if (tid < d) {
unsigned int ai = offset * (2 * tid + 1) - 1;
unsigned int bi = offset * (2 * tid + 2) - 1;
s_compaction_list_exc[bi] =
s_compaction_list_exc[bi] + s_compaction_list_exc[ai];
}
offset <<= 1;
}
// traverse down tree: first down to level 2 across
for (int d = 2; d < num_threads_compaction; d <<= 1) {
offset >>= 1;
cg::sync(cta);
if (tid < (d - 1)) {
unsigned int ai = offset * (tid + 1) - 1;
unsigned int bi = ai + (offset >> 1);
s_compaction_list_exc[bi] =
s_compaction_list_exc[bi] + s_compaction_list_exc[ai];
}
}
cg::sync(cta);
}
///////////////////////////////////////////////////////////////////////////////
//! Perform stream compaction for second child intervals
//! @param s_left shared
//! @param s_left shared memory storage for left interval limits
//! @param s_right shared memory storage for right interval limits
//! @param s_left_count shared memory storage for number of eigenvalues less
//! than left interval limits
//! @param s_right_count shared memory storage for number of eigenvalues less
//! than right interval limits
//! @param mid midpoint of current interval (left of new interval)
//! @param right upper limit of interval
//! @param mid_count eigenvalues less than \a mid
//! @param s_compaction_list list containing the indices where the data has
//! to be stored
//! @param num_threads_active number of active threads / intervals
//! @is_active_interval mark is thread has a second non-empty child interval
///////////////////////////////////////////////////////////////////////////////
template <class T>
__device__ void compactIntervals(float *s_left, float *s_right, T *s_left_count,
T *s_right_count, float mid, float right,
unsigned int mid_count,
unsigned int right_count, T *s_compaction_list,
unsigned int num_threads_active,
unsigned int is_active_second) {
const unsigned int tid = threadIdx.x;
// perform compaction / copy data for all threads where the second
// child is not dead
if ((tid < num_threads_active) && (1 == is_active_second)) {
unsigned int addr_w = num_threads_active + s_compaction_list[tid];
s_left[addr_w] = mid;
s_right[addr_w] = right;
s_left_count[addr_w] = mid_count;
s_right_count[addr_w] = right_count;
}
}
///////////////////////////////////////////////////////////////////////////////
//! Store intervals that have already converged (w.r.t. the desired precision),
//! duplicating intervals that contain multiple eigenvalues
//! @param s_left shared memory storage for left interval limits
//! @param s_right shared memory storage for right interval limits
//! @param s_left_count shared memory storage for number of eigenvalues less
//! than left interval limits
//! @param s_right_count shared memory storage for number of eigenvalues less
//! than right interval limits
//! @param left lower limit of interval
//! @param mid midpoint of interval (updated if split is necessary)
//! @param right upper limit of interval
//! @param left_count eigenvalues less than \a left
//! @param mid_count eigenvalues less than \a mid
//! @param right_count eigenvalues less than \a right
//! @param s_compaction_list_exc helper array for stream compaction, updated
//! at tid if split is necessary
//! @param compact_second_chunk shared mem flag if second chunk is used and
//! ergo requires compaction
//! @param num_threads_active number of active threads / intervals
///////////////////////////////////////////////////////////////////////////////
template <class T, class S>
__device__ void storeIntervalConverged(float *s_left, float *s_right,
T *s_left_count, T *s_right_count,
float &left, float &mid, float &right,
S &left_count, S &mid_count,
S &right_count, T *s_compaction_list_exc,
unsigned int &compact_second_chunk,
const unsigned int num_threads_active) {
const unsigned int tid = threadIdx.x;
const unsigned int multiplicity = right_count - left_count;
// check multiplicity of eigenvalue
if (1 == multiplicity) {
// just re-store intervals, simple eigenvalue
s_left[tid] = left;
s_right[tid] = right;
s_left_count[tid] = left_count;
s_right_count[tid] = right_count;
// mark that no second child / clear
s_right_count[tid + num_threads_active] = 0;
s_compaction_list_exc[tid] = 0;
} else {
// number of eigenvalues after the split less than mid
mid_count = left_count + (multiplicity >> 1);
// store left interval
s_left[tid] = left;
s_right[tid] = right;
s_left_count[tid] = left_count;
s_right_count[tid] = mid_count;
mid = left;
// mark that second child interval exists
s_right_count[tid + num_threads_active] = right_count;
s_compaction_list_exc[tid] = 1;
compact_second_chunk = 1;
}
}
template <class T, class S>
__device__ void storeIntervalConverged(float *s_left, float *s_right,
T *s_left_count, T *s_right_count,
float &left, float &mid, float &right,
S &left_count, S &mid_count,
S &right_count, T *s_compaction_list_exc,
unsigned int &compact_second_chunk,
const unsigned int num_threads_active,
unsigned int &is_active_second) {
const unsigned int tid = threadIdx.x;
const unsigned int multiplicity = right_count - left_count;
// check multiplicity of eigenvalue
if (1 == multiplicity) {
// just re-store intervals, simple eigenvalue
s_left[tid] = left;
s_right[tid] = right;
s_left_count[tid] = left_count;
s_right_count[tid] = right_count;
// mark that no second child / clear
is_active_second = 0;
s_compaction_list_exc[tid] = 0;
} else {
// number of eigenvalues after the split less than mid
mid_count = left_count + (multiplicity >> 1);
// store left interval
s_left[tid] = left;
s_right[tid] = right;
s_left_count[tid] = left_count;
s_right_count[tid] = mid_count;
mid = left;
// mark that second child interval exists
is_active_second = 1;
s_compaction_list_exc[tid] = 1;
compact_second_chunk = 1;
}
}
///////////////////////////////////////////////////////////////////////////////
//! Subdivide interval if active and not already converged
//! @param tid id of thread
//! @param s_left shared memory storage for left interval limits
//! @param s_right shared memory storage for right interval limits
//! @param s_left_count shared memory storage for number of eigenvalues less
//! than left interval limits
//! @param s_right_count shared memory storage for number of eigenvalues less
//! than right interval limits
//! @param num_threads_active number of active threads in warp
//! @param left lower limit of interval
//! @param right upper limit of interval
//! @param left_count eigenvalues less than \a left
//! @param right_count eigenvalues less than \a right
//! @param all_threads_converged shared memory flag if all threads are
//! converged
///////////////////////////////////////////////////////////////////////////////
template <class T>
__device__ void subdivideActiveInterval(
const unsigned int tid, float *s_left, float *s_right, T *s_left_count,
T *s_right_count, const unsigned int num_threads_active, float &left,
float &right, unsigned int &left_count, unsigned int &right_count,
float &mid, unsigned int &all_threads_converged) {
// for all active threads
if (tid < num_threads_active) {
left = s_left[tid];
right = s_right[tid];
left_count = s_left_count[tid];
right_count = s_right_count[tid];
// check if thread already converged
if (left != right) {
mid = computeMidpoint(left, right);
atomicExch(&all_threads_converged, 0);
} else if ((right_count - left_count) > 1) {
// mark as not converged if multiple eigenvalues enclosed
// duplicate interval in storeIntervalsConverged()
atomicExch(&all_threads_converged, 0);
}
} // end for all active threads
}
#endif // #ifndef _BISECT_UTIL_H_