forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbisect_kernel_large.cuh
805 lines (674 loc) · 31 KB
/
bisect_kernel_large.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Determine eigenvalues for large symmetric, tridiagonal matrix. First
step of the computation. */
#ifndef _BISECT_KERNEL_LARGE_H_
#define _BISECT_KERNEL_LARGE_H_
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
// includes, project
#include "config.h"
#include "util.h"
// additional kernel
#include "bisect_util.cu"
// declaration, forward
////////////////////////////////////////////////////////////////////////////////
//! Write data to global memory
////////////////////////////////////////////////////////////////////////////////
__device__ void writeToGmem(
const unsigned int tid, const unsigned int tid_2,
const unsigned int num_threads_active, const unsigned int num_blocks_mult,
float *g_left_one, float *g_right_one, unsigned int *g_pos_one,
float *g_left_mult, float *g_right_mult, unsigned int *g_left_count_mult,
unsigned int *g_right_count_mult, float *s_left, float *s_right,
unsigned short *s_left_count, unsigned short *s_right_count,
unsigned int *g_blocks_mult, unsigned int *g_blocks_mult_sum,
unsigned short *s_compaction_list, unsigned short *s_cl_helper,
unsigned int offset_mult_lambda);
////////////////////////////////////////////////////////////////////////////////
//! Perform final stream compaction before writing out data
////////////////////////////////////////////////////////////////////////////////
__device__ void compactStreamsFinal(
const unsigned int tid, const unsigned int tid_2,
const unsigned int num_threads_active, unsigned int &offset_mult_lambda,
float *s_left, float *s_right, unsigned short *s_left_count,
unsigned short *s_right_count, unsigned short *s_cl_one,
unsigned short *s_cl_mult, unsigned short *s_cl_blocking,
unsigned short *s_cl_helper, unsigned int is_one_lambda,
unsigned int is_one_lambda_2, float &left, float &right, float &left_2,
float &right_2, unsigned int &left_count, unsigned int &right_count,
unsigned int &left_count_2, unsigned int &right_count_2,
unsigned int c_block_iend, unsigned int c_sum_block,
unsigned int c_block_iend_2, unsigned int c_sum_block_2,
cg::thread_block cta);
////////////////////////////////////////////////////////////////////////////////
//! Perform scan to compact list of block start addresses
////////////////////////////////////////////////////////////////////////////////
__device__ void scanCompactBlocksStartAddress(
const unsigned int tid, const unsigned int tid_2,
const unsigned int num_threads_compaction, unsigned short *s_cl_blocking,
unsigned short *s_cl_helper, cg::thread_block cta);
////////////////////////////////////////////////////////////////////////////////
//! Perform scan to obtain number of eigenvalues before a specific block
////////////////////////////////////////////////////////////////////////////////
__device__ void scanSumBlocks(const unsigned int tid, const unsigned int tid_2,
const unsigned int num_threads_active,
const unsigned int num_threads_compaction,
unsigned short *s_cl_blocking,
unsigned short *s_cl_helper,
cg::thread_block cta);
////////////////////////////////////////////////////////////////////////////////
//! Perform initial scan for compaction of intervals containing one and
//! multiple eigenvalues; also do initial scan to build blocks
////////////////////////////////////////////////////////////////////////////////
__device__ void scanInitial(const unsigned int tid, const unsigned int tid_2,
const unsigned int num_threads_active,
const unsigned int num_threads_compaction,
unsigned short *s_cl_one, unsigned short *s_cl_mult,
unsigned short *s_cl_blocking,
unsigned short *s_cl_helper, cg::thread_block cta);
////////////////////////////////////////////////////////////////////////////////
//! Store all non-empty intervals resulting from the subdivision of the interval
//! currently processed by the thread
//! @param addr address where to store
////////////////////////////////////////////////////////////////////////////////
__device__ void storeNonEmptyIntervalsLarge(
unsigned int addr, const unsigned int num_threads_active, float *s_left,
float *s_right, unsigned short *s_left_count, unsigned short *s_right_count,
float left, float mid, float right, const unsigned short left_count,
const unsigned short mid_count, const unsigned short right_count,
float epsilon, unsigned int &compact_second_chunk,
unsigned short *s_compaction_list, unsigned int &is_active_second);
////////////////////////////////////////////////////////////////////////////////
//! Bisection to find eigenvalues of a real, symmetric, and tridiagonal matrix
//! @param g_d diagonal elements in global memory
//! @param g_s superdiagonal elements in global elements (stored so that the
//! element *(g_s - 1) can be accessed an equals 0
//! @param n size of matrix
//! @param lg lower bound of input interval (e.g. Gerschgorin interval)
//! @param ug upper bound of input interval (e.g. Gerschgorin interval)
//! @param lg_eig_count number of eigenvalues that are smaller than \a lg
//! @param lu_eig_count number of eigenvalues that are smaller than \a lu
//! @param epsilon desired accuracy of eigenvalues to compute
////////////////////////////////////////////////////////////////////////////////
__global__ void bisectKernelLarge(
float *g_d, float *g_s, const unsigned int n, const float lg,
const float ug, const unsigned int lg_eig_count,
const unsigned int ug_eig_count, float epsilon, unsigned int *g_num_one,
unsigned int *g_num_blocks_mult, float *g_left_one, float *g_right_one,
unsigned int *g_pos_one, float *g_left_mult, float *g_right_mult,
unsigned int *g_left_count_mult, unsigned int *g_right_count_mult,
unsigned int *g_blocks_mult, unsigned int *g_blocks_mult_sum) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
const unsigned int tid = threadIdx.x;
// intervals (store left and right because the subdivision tree is in general
// not dense
__shared__ float s_left[2 * MAX_THREADS_BLOCK + 1];
__shared__ float s_right[2 * MAX_THREADS_BLOCK + 1];
// number of eigenvalues that are smaller than s_left / s_right
// (correspondence is realized via indices)
__shared__ unsigned short s_left_count[2 * MAX_THREADS_BLOCK + 1];
__shared__ unsigned short s_right_count[2 * MAX_THREADS_BLOCK + 1];
// helper for stream compaction
__shared__ unsigned short s_compaction_list[2 * MAX_THREADS_BLOCK + 1];
// state variables for whole block
// if 0 then compaction of second chunk of child intervals is not necessary
// (because all intervals had exactly one non-dead child)
__shared__ unsigned int compact_second_chunk;
// if 1 then all threads are converged
__shared__ unsigned int all_threads_converged;
// number of currently active threads
__shared__ unsigned int num_threads_active;
// number of threads to use for stream compaction
__shared__ unsigned int num_threads_compaction;
// helper for exclusive scan
unsigned short *s_compaction_list_exc = s_compaction_list + 1;
// variables for currently processed interval
// left and right limit of active interval
float left = 0.0f;
float right = 0.0f;
unsigned int left_count = 0;
unsigned int right_count = 0;
// midpoint of active interval
float mid = 0.0f;
// number of eigenvalues smaller then mid
unsigned int mid_count = 0;
// helper for stream compaction (tracking of threads generating second child)
unsigned int is_active_second = 0;
// initialize lists
s_compaction_list[tid] = 0;
s_left[tid] = 0;
s_right[tid] = 0;
s_left_count[tid] = 0;
s_right_count[tid] = 0;
cg::sync(cta);
// set up initial configuration
if (0 == tid) {
s_left[0] = lg;
s_right[0] = ug;
s_left_count[0] = lg_eig_count;
s_right_count[0] = ug_eig_count;
compact_second_chunk = 0;
num_threads_active = 1;
num_threads_compaction = 1;
all_threads_converged = 1;
}
cg::sync(cta);
// for all active threads read intervals from the last level
// the number of (worst case) active threads per level l is 2^l
while (true) {
subdivideActiveInterval(tid, s_left, s_right, s_left_count, s_right_count,
num_threads_active, left, right, left_count,
right_count, mid, all_threads_converged);
cg::sync(cta);
// check if done
if (1 == all_threads_converged) {
break;
}
// compute number of eigenvalues smaller than mid
// use all threads for reading the necessary matrix data from global
// memory
// use s_left and s_right as scratch space for diagonal and
// superdiagonal of matrix
mid_count = computeNumSmallerEigenvalsLarge(g_d, g_s, n, mid, threadIdx.x,
num_threads_active, s_left,
s_right, (left == right), cta);
cg::sync(cta);
// store intervals
// for all threads store the first child interval in a continuous chunk of
// memory, and the second child interval -- if it exists -- in a second
// chunk; it is likely that all threads reach convergence up to
// \a epsilon at the same level; furthermore, for higher level most / all
// threads will have only one child, storing the first child compactly will
// (first) avoid to perform a compaction step on the first chunk, (second)
// make it for higher levels (when all threads / intervals have
// exactly one child) unnecessary to perform a compaction of the second
// chunk
if (tid < num_threads_active) {
if (left != right) {
// store intervals
storeNonEmptyIntervalsLarge(tid, num_threads_active, s_left, s_right,
s_left_count, s_right_count, left, mid,
right, left_count, mid_count, right_count,
epsilon, compact_second_chunk,
s_compaction_list_exc, is_active_second);
} else {
// re-write converged interval (has to be stored again because s_left
// and s_right are used as scratch space for
// computeNumSmallerEigenvalsLarge()
s_left[tid] = left;
s_right[tid] = left;
s_left_count[tid] = left_count;
s_right_count[tid] = right_count;
is_active_second = 0;
}
}
// necessary so that compact_second_chunk is up-to-date
cg::sync(cta);
// perform compaction of chunk where second children are stored
// scan of (num_threads_active / 2) elements, thus at most
// (num_threads_active / 4) threads are needed
if (compact_second_chunk > 0) {
// create indices for compaction
createIndicesCompaction(s_compaction_list_exc, num_threads_compaction,
cta);
compactIntervals(s_left, s_right, s_left_count, s_right_count, mid, right,
mid_count, right_count, s_compaction_list,
num_threads_active, is_active_second);
}
cg::sync(cta);
// update state variables
if (0 == tid) {
// update number of active threads with result of reduction
num_threads_active += s_compaction_list[num_threads_active];
num_threads_compaction = ceilPow2(num_threads_active);
compact_second_chunk = 0;
all_threads_converged = 1;
}
cg::sync(cta);
if (num_threads_compaction > blockDim.x) {
break;
}
}
cg::sync(cta);
// generate two lists of intervals; one with intervals that contain one
// eigenvalue (or are converged), and one with intervals that need further
// subdivision
// perform two scans in parallel
unsigned int left_count_2;
unsigned int right_count_2;
unsigned int tid_2 = tid + blockDim.x;
// cache in per thread registers so that s_left_count and s_right_count
// can be used for scans
left_count = s_left_count[tid];
right_count = s_right_count[tid];
// some threads have to cache data for two intervals
if (tid_2 < num_threads_active) {
left_count_2 = s_left_count[tid_2];
right_count_2 = s_right_count[tid_2];
}
// compaction list for intervals containing one and multiple eigenvalues
// do not affect first element for exclusive scan
unsigned short *s_cl_one = s_left_count + 1;
unsigned short *s_cl_mult = s_right_count + 1;
// compaction list for generating blocks of intervals containing multiple
// eigenvalues
unsigned short *s_cl_blocking = s_compaction_list_exc;
// helper compaction list for generating blocks of intervals
__shared__ unsigned short s_cl_helper[2 * MAX_THREADS_BLOCK + 1];
if (0 == tid) {
// set to 0 for exclusive scan
s_left_count[0] = 0;
s_right_count[0] = 0;
}
cg::sync(cta);
// flag if interval contains one or multiple eigenvalues
unsigned int is_one_lambda = 0;
unsigned int is_one_lambda_2 = 0;
// number of eigenvalues in the interval
unsigned int multiplicity = right_count - left_count;
is_one_lambda = (1 == multiplicity);
s_cl_one[tid] = is_one_lambda;
s_cl_mult[tid] = (!is_one_lambda);
// (note: s_cl_blocking is non-zero only where s_cl_mult[] is non-zero)
s_cl_blocking[tid] = (1 == is_one_lambda) ? 0 : multiplicity;
s_cl_helper[tid] = 0;
if (tid_2 < num_threads_active) {
unsigned int multiplicity = right_count_2 - left_count_2;
is_one_lambda_2 = (1 == multiplicity);
s_cl_one[tid_2] = is_one_lambda_2;
s_cl_mult[tid_2] = (!is_one_lambda_2);
// (note: s_cl_blocking is non-zero only where s_cl_mult[] is non-zero)
s_cl_blocking[tid_2] = (1 == is_one_lambda_2) ? 0 : multiplicity;
s_cl_helper[tid_2] = 0;
} else if (tid_2 < (2 * MAX_THREADS_BLOCK + 1)) {
// clear
s_cl_blocking[tid_2] = 0;
s_cl_helper[tid_2] = 0;
}
scanInitial(tid, tid_2, num_threads_active, num_threads_compaction, s_cl_one,
s_cl_mult, s_cl_blocking, s_cl_helper, cta);
scanSumBlocks(tid, tid_2, num_threads_active, num_threads_compaction,
s_cl_blocking, s_cl_helper, cta);
// end down sweep of scan
cg::sync(cta);
unsigned int c_block_iend = 0;
unsigned int c_block_iend_2 = 0;
unsigned int c_sum_block = 0;
unsigned int c_sum_block_2 = 0;
// for each thread / interval that corresponds to root node of interval block
// store start address of block and total number of eigenvalues in all blocks
// before this block (particular thread is irrelevant, constraint is to
// have a subset of threads so that one and only one of them is in each
// interval)
if (1 == s_cl_helper[tid]) {
c_block_iend = s_cl_mult[tid] + 1;
c_sum_block = s_cl_blocking[tid];
}
if (1 == s_cl_helper[tid_2]) {
c_block_iend_2 = s_cl_mult[tid_2] + 1;
c_sum_block_2 = s_cl_blocking[tid_2];
}
scanCompactBlocksStartAddress(tid, tid_2, num_threads_compaction,
s_cl_blocking, s_cl_helper, cta);
// finished second scan for s_cl_blocking
cg::sync(cta);
// determine the global results
__shared__ unsigned int num_blocks_mult;
__shared__ unsigned int num_mult;
__shared__ unsigned int offset_mult_lambda;
if (0 == tid) {
num_blocks_mult = s_cl_blocking[num_threads_active - 1];
offset_mult_lambda = s_cl_one[num_threads_active - 1];
num_mult = s_cl_mult[num_threads_active - 1];
*g_num_one = offset_mult_lambda;
*g_num_blocks_mult = num_blocks_mult;
}
cg::sync(cta);
float left_2, right_2;
--s_cl_one;
--s_cl_mult;
--s_cl_blocking;
compactStreamsFinal(tid, tid_2, num_threads_active, offset_mult_lambda,
s_left, s_right, s_left_count, s_right_count, s_cl_one,
s_cl_mult, s_cl_blocking, s_cl_helper, is_one_lambda,
is_one_lambda_2, left, right, left_2, right_2, left_count,
right_count, left_count_2, right_count_2, c_block_iend,
c_sum_block, c_block_iend_2, c_sum_block_2, cta);
cg::sync(cta);
// final adjustment before writing out data to global memory
if (0 == tid) {
s_cl_blocking[num_blocks_mult] = num_mult;
s_cl_helper[0] = 0;
}
cg::sync(cta);
// write to global memory
writeToGmem(tid, tid_2, num_threads_active, num_blocks_mult, g_left_one,
g_right_one, g_pos_one, g_left_mult, g_right_mult,
g_left_count_mult, g_right_count_mult, s_left, s_right,
s_left_count, s_right_count, g_blocks_mult, g_blocks_mult_sum,
s_compaction_list, s_cl_helper, offset_mult_lambda);
}
////////////////////////////////////////////////////////////////////////////////
//! Write data to global memory
////////////////////////////////////////////////////////////////////////////////
__device__ void writeToGmem(
const unsigned int tid, const unsigned int tid_2,
const unsigned int num_threads_active, const unsigned int num_blocks_mult,
float *g_left_one, float *g_right_one, unsigned int *g_pos_one,
float *g_left_mult, float *g_right_mult, unsigned int *g_left_count_mult,
unsigned int *g_right_count_mult, float *s_left, float *s_right,
unsigned short *s_left_count, unsigned short *s_right_count,
unsigned int *g_blocks_mult, unsigned int *g_blocks_mult_sum,
unsigned short *s_compaction_list, unsigned short *s_cl_helper,
unsigned int offset_mult_lambda) {
if (tid < offset_mult_lambda) {
g_left_one[tid] = s_left[tid];
g_right_one[tid] = s_right[tid];
// right count can be used to order eigenvalues without sorting
g_pos_one[tid] = s_right_count[tid];
} else {
g_left_mult[tid - offset_mult_lambda] = s_left[tid];
g_right_mult[tid - offset_mult_lambda] = s_right[tid];
g_left_count_mult[tid - offset_mult_lambda] = s_left_count[tid];
g_right_count_mult[tid - offset_mult_lambda] = s_right_count[tid];
}
if (tid_2 < num_threads_active) {
if (tid_2 < offset_mult_lambda) {
g_left_one[tid_2] = s_left[tid_2];
g_right_one[tid_2] = s_right[tid_2];
// right count can be used to order eigenvalues without sorting
g_pos_one[tid_2] = s_right_count[tid_2];
} else {
g_left_mult[tid_2 - offset_mult_lambda] = s_left[tid_2];
g_right_mult[tid_2 - offset_mult_lambda] = s_right[tid_2];
g_left_count_mult[tid_2 - offset_mult_lambda] = s_left_count[tid_2];
g_right_count_mult[tid_2 - offset_mult_lambda] = s_right_count[tid_2];
}
} // end writing out data
// note that s_cl_blocking = s_compaction_list + 1;, that is by writing out
// s_compaction_list we write the exclusive scan result
if (tid <= num_blocks_mult) {
g_blocks_mult[tid] = s_compaction_list[tid];
g_blocks_mult_sum[tid] = s_cl_helper[tid];
}
if (tid_2 <= num_blocks_mult) {
g_blocks_mult[tid_2] = s_compaction_list[tid_2];
g_blocks_mult_sum[tid_2] = s_cl_helper[tid_2];
}
}
////////////////////////////////////////////////////////////////////////////////
//! Perform final stream compaction before writing data to global memory
////////////////////////////////////////////////////////////////////////////////
__device__ void compactStreamsFinal(
const unsigned int tid, const unsigned int tid_2,
const unsigned int num_threads_active, unsigned int &offset_mult_lambda,
float *s_left, float *s_right, unsigned short *s_left_count,
unsigned short *s_right_count, unsigned short *s_cl_one,
unsigned short *s_cl_mult, unsigned short *s_cl_blocking,
unsigned short *s_cl_helper, unsigned int is_one_lambda,
unsigned int is_one_lambda_2, float &left, float &right, float &left_2,
float &right_2, unsigned int &left_count, unsigned int &right_count,
unsigned int &left_count_2, unsigned int &right_count_2,
unsigned int c_block_iend, unsigned int c_sum_block,
unsigned int c_block_iend_2, unsigned int c_sum_block_2,
cg::thread_block cta) {
// cache data before performing compaction
left = s_left[tid];
right = s_right[tid];
if (tid_2 < num_threads_active) {
left_2 = s_left[tid_2];
right_2 = s_right[tid_2];
}
cg::sync(cta);
// determine addresses for intervals containing multiple eigenvalues and
// addresses for blocks of intervals
unsigned int ptr_w = 0;
unsigned int ptr_w_2 = 0;
unsigned int ptr_blocking_w = 0;
unsigned int ptr_blocking_w_2 = 0;
ptr_w = (1 == is_one_lambda) ? s_cl_one[tid]
: s_cl_mult[tid] + offset_mult_lambda;
if (0 != c_block_iend) {
ptr_blocking_w = s_cl_blocking[tid];
}
if (tid_2 < num_threads_active) {
ptr_w_2 = (1 == is_one_lambda_2) ? s_cl_one[tid_2]
: s_cl_mult[tid_2] + offset_mult_lambda;
if (0 != c_block_iend_2) {
ptr_blocking_w_2 = s_cl_blocking[tid_2];
}
}
cg::sync(cta);
// store compactly in shared mem
s_left[ptr_w] = left;
s_right[ptr_w] = right;
s_left_count[ptr_w] = left_count;
s_right_count[ptr_w] = right_count;
if (0 != c_block_iend) {
s_cl_blocking[ptr_blocking_w + 1] = c_block_iend - 1;
s_cl_helper[ptr_blocking_w + 1] = c_sum_block;
}
if (tid_2 < num_threads_active) {
// store compactly in shared mem
s_left[ptr_w_2] = left_2;
s_right[ptr_w_2] = right_2;
s_left_count[ptr_w_2] = left_count_2;
s_right_count[ptr_w_2] = right_count_2;
if (0 != c_block_iend_2) {
s_cl_blocking[ptr_blocking_w_2 + 1] = c_block_iend_2 - 1;
s_cl_helper[ptr_blocking_w_2 + 1] = c_sum_block_2;
}
}
}
////////////////////////////////////////////////////////////////////////////////
//! Compute addresses to obtain compact list of block start addresses
////////////////////////////////////////////////////////////////////////////////
__device__ void scanCompactBlocksStartAddress(
const unsigned int tid, const unsigned int tid_2,
const unsigned int num_threads_compaction, unsigned short *s_cl_blocking,
unsigned short *s_cl_helper, cg::thread_block cta) {
// prepare for second step of block generation: compaction of the block
// list itself to efficiently write out these
s_cl_blocking[tid] = s_cl_helper[tid];
if (tid_2 < num_threads_compaction) {
s_cl_blocking[tid_2] = s_cl_helper[tid_2];
}
cg::sync(cta);
// additional scan to compact s_cl_blocking that permits to generate a
// compact list of eigenvalue blocks each one containing about
// MAX_THREADS_BLOCK eigenvalues (so that each of these blocks may be
// processed by one thread block in a subsequent processing step
unsigned int offset = 1;
// build scan tree
for (int d = (num_threads_compaction >> 1); d > 0; d >>= 1) {
cg::sync(cta);
if (tid < d) {
unsigned int ai = offset * (2 * tid + 1) - 1;
unsigned int bi = offset * (2 * tid + 2) - 1;
s_cl_blocking[bi] = s_cl_blocking[bi] + s_cl_blocking[ai];
}
offset <<= 1;
}
// traverse down tree: first down to level 2 across
for (int d = 2; d < num_threads_compaction; d <<= 1) {
offset >>= 1;
cg::sync(cta);
//
if (tid < (d - 1)) {
unsigned int ai = offset * (tid + 1) - 1;
unsigned int bi = ai + (offset >> 1);
s_cl_blocking[bi] = s_cl_blocking[bi] + s_cl_blocking[ai];
}
}
}
////////////////////////////////////////////////////////////////////////////////
//! Perform scan to obtain number of eigenvalues before a specific block
////////////////////////////////////////////////////////////////////////////////
__device__ void scanSumBlocks(const unsigned int tid, const unsigned int tid_2,
const unsigned int num_threads_active,
const unsigned int num_threads_compaction,
unsigned short *s_cl_blocking,
unsigned short *s_cl_helper,
cg::thread_block cta) {
unsigned int offset = 1;
// first step of scan to build the sum of elements within each block
// build up tree
for (int d = num_threads_compaction >> 1; d > 0; d >>= 1) {
cg::sync(cta);
if (tid < d) {
unsigned int ai = offset * (2 * tid + 1) - 1;
unsigned int bi = offset * (2 * tid + 2) - 1;
s_cl_blocking[bi] += s_cl_blocking[ai];
}
offset *= 2;
}
// first step of scan to build the sum of elements within each block
// traverse down tree
for (int d = 2; d < (num_threads_compaction - 1); d <<= 1) {
offset >>= 1;
cg::sync(cta);
if (tid < (d - 1)) {
unsigned int ai = offset * (tid + 1) - 1;
unsigned int bi = ai + (offset >> 1);
s_cl_blocking[bi] += s_cl_blocking[ai];
}
}
cg::sync(cta);
if (0 == tid) {
// move last element of scan to last element that is valid
// necessary because the number of threads employed for scan is a power
// of two and not necessarily the number of active threasd
s_cl_helper[num_threads_active - 1] =
s_cl_helper[num_threads_compaction - 1];
s_cl_blocking[num_threads_active - 1] =
s_cl_blocking[num_threads_compaction - 1];
}
}
////////////////////////////////////////////////////////////////////////////////
//! Perform initial scan for compaction of intervals containing one and
//! multiple eigenvalues; also do initial scan to build blocks
////////////////////////////////////////////////////////////////////////////////
__device__ void scanInitial(const unsigned int tid, const unsigned int tid_2,
const unsigned int num_threads_active,
const unsigned int num_threads_compaction,
unsigned short *s_cl_one, unsigned short *s_cl_mult,
unsigned short *s_cl_blocking,
unsigned short *s_cl_helper, cg::thread_block cta) {
// perform scan to compactly write out the intervals containing one and
// multiple eigenvalues
// also generate tree for blocking of intervals containing multiple
// eigenvalues
unsigned int offset = 1;
// build scan tree
for (int d = (num_threads_compaction >> 1); d > 0; d >>= 1) {
cg::sync(cta);
if (tid < d) {
unsigned int ai = offset * (2 * tid + 1);
unsigned int bi = offset * (2 * tid + 2) - 1;
s_cl_one[bi] = s_cl_one[bi] + s_cl_one[ai - 1];
s_cl_mult[bi] = s_cl_mult[bi] + s_cl_mult[ai - 1];
// s_cl_helper is binary and zero for an internal node and 1 for a
// root node of a tree corresponding to a block
// s_cl_blocking contains the number of nodes in each sub-tree at each
// iteration, the data has to be kept to compute the total number of
// eigenvalues per block that, in turn, is needed to efficiently
// write out data in the second step
if ((s_cl_helper[ai - 1] != 1) || (s_cl_helper[bi] != 1)) {
// check how many childs are non terminated
if (s_cl_helper[ai - 1] == 1) {
// mark as terminated
s_cl_helper[bi] = 1;
} else if (s_cl_helper[bi] == 1) {
// mark as terminated
s_cl_helper[ai - 1] = 1;
} else // both childs are non-terminated
{
unsigned int temp = s_cl_blocking[bi] + s_cl_blocking[ai - 1];
if (temp > MAX_THREADS_BLOCK) {
// the two child trees have to form separate blocks, terminate trees
s_cl_helper[ai - 1] = 1;
s_cl_helper[bi] = 1;
} else {
// build up tree by joining subtrees
s_cl_blocking[bi] = temp;
s_cl_blocking[ai - 1] = 0;
}
}
} // end s_cl_helper update
}
offset <<= 1;
}
// traverse down tree, this only for stream compaction, not for block
// construction
for (int d = 2; d < num_threads_compaction; d <<= 1) {
offset >>= 1;
cg::sync(cta);
//
if (tid < (d - 1)) {
unsigned int ai = offset * (tid + 1) - 1;
unsigned int bi = ai + (offset >> 1);
s_cl_one[bi] = s_cl_one[bi] + s_cl_one[ai];
s_cl_mult[bi] = s_cl_mult[bi] + s_cl_mult[ai];
}
}
}
////////////////////////////////////////////////////////////////////////////////
//! Store all non-empty intervals resulting from the subdivision of the interval
//! currently processed by the thread
////////////////////////////////////////////////////////////////////////////////
__device__ void storeNonEmptyIntervalsLarge(
unsigned int addr, const unsigned int num_threads_active, float *s_left,
float *s_right, unsigned short *s_left_count, unsigned short *s_right_count,
float left, float mid, float right, const unsigned short left_count,
const unsigned short mid_count, const unsigned short right_count,
float epsilon, unsigned int &compact_second_chunk,
unsigned short *s_compaction_list, unsigned int &is_active_second) {
// check if both child intervals are valid
if ((left_count != mid_count) && (mid_count != right_count)) {
storeInterval(addr, s_left, s_right, s_left_count, s_right_count, left, mid,
left_count, mid_count, epsilon);
is_active_second = 1;
s_compaction_list[threadIdx.x] = 1;
atomicExch(&compact_second_chunk, 1);
} else {
// only one non-empty child interval
// mark that no second child
is_active_second = 0;
s_compaction_list[threadIdx.x] = 0;
// store the one valid child interval
if (left_count != mid_count) {
storeInterval(addr, s_left, s_right, s_left_count, s_right_count, left,
mid, left_count, mid_count, epsilon);
} else {
storeInterval(addr, s_left, s_right, s_left_count, s_right_count, mid,
right, mid_count, right_count, epsilon);
}
}
}
#endif // #ifndef _BISECT_KERNEL_LARGE_H_