forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMonteCarloMultiGPU.cpp
487 lines (393 loc) · 14.8 KB
/
MonteCarloMultiGPU.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample evaluates fair call price for a
* given set of European options using Monte Carlo approach.
* See supplied whitepaper for more explanations.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <cuda_runtime.h>
// includes, project
#include <helper_functions.h> // Helper functions (utilities, parsing, timing)
#include <helper_cuda.h> // helper functions (cuda error checking and initialization)
#include <multithreading.h>
#include "MonteCarlo_common.h"
int *pArgc = NULL;
char **pArgv = NULL;
#ifdef WIN32
#define strcasecmp _strcmpi
#endif
////////////////////////////////////////////////////////////////////////////////
// Common functions
////////////////////////////////////////////////////////////////////////////////
float randFloat(float low, float high) {
float t = (float)rand() / (float)RAND_MAX;
return (1.0f - t) * low + t * high;
}
/// Utility function to tweak problem size for small GPUs
int adjustProblemSize(int GPU_N, int default_nOptions) {
int nOptions = default_nOptions;
// select problem size
for (int i = 0; i < GPU_N; i++) {
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, i));
int cudaCores = _ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) *
deviceProp.multiProcessorCount;
if (cudaCores <= 32) {
nOptions = (nOptions < cudaCores / 2 ? nOptions : cudaCores / 2);
}
}
return nOptions;
}
int adjustGridSize(int GPUIndex, int defaultGridSize) {
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, GPUIndex));
int maxGridSize = deviceProp.multiProcessorCount * 40;
return ((defaultGridSize > maxGridSize) ? maxGridSize : defaultGridSize);
}
///////////////////////////////////////////////////////////////////////////////
// CPU reference functions
///////////////////////////////////////////////////////////////////////////////
extern "C" void MonteCarloCPU(TOptionValue &callValue, TOptionData optionData,
float *h_Random, int pathN);
// Black-Scholes formula for call options
extern "C" void BlackScholesCall(float &CallResult, TOptionData optionData);
////////////////////////////////////////////////////////////////////////////////
// GPU-driving host thread
////////////////////////////////////////////////////////////////////////////////
// Timer
StopWatchInterface **hTimer = NULL;
static CUT_THREADPROC solverThread(TOptionPlan *plan) {
// Init GPU
checkCudaErrors(cudaSetDevice(plan->device));
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, plan->device));
// Start the timer
sdkStartTimer(&hTimer[plan->device]);
// Allocate intermediate memory for MC integrator and initialize
// RNG states
initMonteCarloGPU(plan);
// Main computation
MonteCarloGPU(plan);
checkCudaErrors(cudaDeviceSynchronize());
// Stop the timer
sdkStopTimer(&hTimer[plan->device]);
// Shut down this GPU
closeMonteCarloGPU(plan);
cudaStreamSynchronize(0);
printf("solverThread() finished - GPU Device %d: %s\n", plan->device,
deviceProp.name);
CUT_THREADEND;
}
static void multiSolver(TOptionPlan *plan, int nPlans) {
// allocate and initialize an array of stream handles
cudaStream_t *streams = (cudaStream_t *)malloc(nPlans * sizeof(cudaStream_t));
cudaEvent_t *events = (cudaEvent_t *)malloc(nPlans * sizeof(cudaEvent_t));
for (int i = 0; i < nPlans; i++) {
checkCudaErrors(cudaSetDevice(plan[i].device));
checkCudaErrors(cudaStreamCreate(&(streams[i])));
checkCudaErrors(cudaEventCreate(&(events[i])));
}
// Init Each GPU
// In CUDA 4.0 we can call cudaSetDevice multiple times to target each device
// Set the device desired, then perform initializations on that device
for (int i = 0; i < nPlans; i++) {
// set the target device to perform initialization on
checkCudaErrors(cudaSetDevice(plan[i].device));
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, plan[i].device));
// Allocate intermediate memory for MC integrator
// and initialize RNG state
initMonteCarloGPU(&plan[i]);
}
for (int i = 0; i < nPlans; i++) {
checkCudaErrors(cudaSetDevice(plan[i].device));
checkCudaErrors(cudaDeviceSynchronize());
}
// Start the timer
sdkResetTimer(&hTimer[0]);
sdkStartTimer(&hTimer[0]);
for (int i = 0; i < nPlans; i++) {
checkCudaErrors(cudaSetDevice(plan[i].device));
// Main computations
MonteCarloGPU(&plan[i], streams[i]);
checkCudaErrors(cudaEventRecord(events[i], streams[i]));
}
for (int i = 0; i < nPlans; i++) {
checkCudaErrors(cudaSetDevice(plan[i].device));
cudaEventSynchronize(events[i]);
}
// Stop the timer
sdkStopTimer(&hTimer[0]);
for (int i = 0; i < nPlans; i++) {
checkCudaErrors(cudaSetDevice(plan[i].device));
closeMonteCarloGPU(&plan[i]);
checkCudaErrors(cudaStreamDestroy(streams[i]));
checkCudaErrors(cudaEventDestroy(events[i]));
}
}
///////////////////////////////////////////////////////////////////////////////
// Main program
///////////////////////////////////////////////////////////////////////////////
#define DO_CPU
#undef DO_CPU
#define PRINT_RESULTS
#undef PRINT_RESULTS
void usage() {
printf("--method=[threaded,streamed] --scaling=[strong,weak] [--help]\n");
printf("Method=threaded: 1 CPU thread for each GPU [default]\n");
printf(
" streamed: 1 CPU thread handles all GPUs (requires CUDA 4.0 or "
"newer)\n");
printf("Scaling=strong : constant problem size\n");
printf(
" weak : problem size scales with number of available GPUs "
"[default]\n");
}
int main(int argc, char **argv) {
char *multiMethodChoice = NULL;
char *scalingChoice = NULL;
bool use_threads = true;
bool bqatest = false;
bool strongScaling = false;
pArgc = &argc;
pArgv = argv;
printf("%s Starting...\n\n", argv[0]);
if (checkCmdLineFlag(argc, (const char **)argv, "qatest")) {
bqatest = true;
}
getCmdLineArgumentString(argc, (const char **)argv, "method",
&multiMethodChoice);
getCmdLineArgumentString(argc, (const char **)argv, "scaling",
&scalingChoice);
if (checkCmdLineFlag(argc, (const char **)argv, "h") ||
checkCmdLineFlag(argc, (const char **)argv, "help")) {
usage();
exit(EXIT_SUCCESS);
}
if (multiMethodChoice == NULL) {
use_threads = false;
} else {
if (!strcasecmp(multiMethodChoice, "threaded")) {
use_threads = true;
} else {
use_threads = false;
}
}
if (use_threads == false) {
printf("Using single CPU thread for multiple GPUs\n");
}
if (scalingChoice == NULL) {
strongScaling = false;
} else {
if (!strcasecmp(scalingChoice, "strong")) {
strongScaling = true;
} else {
strongScaling = false;
}
}
// GPU number present in the system
int GPU_N;
checkCudaErrors(cudaGetDeviceCount(&GPU_N));
int nOptions = 8 * 1024;
nOptions = adjustProblemSize(GPU_N, nOptions);
// select problem size
int scale = (strongScaling) ? 1 : GPU_N;
int OPT_N = nOptions * scale;
int PATH_N = 262144;
// initialize the timers
hTimer = new StopWatchInterface *[GPU_N];
for (int i = 0; i < GPU_N; i++) {
sdkCreateTimer(&hTimer[i]);
sdkResetTimer(&hTimer[i]);
}
// Input data array
TOptionData *optionData = new TOptionData[OPT_N];
// Final GPU MC results
TOptionValue *callValueGPU = new TOptionValue[OPT_N];
//"Theoretical" call values by Black-Scholes formula
float *callValueBS = new float[OPT_N];
// Solver config
TOptionPlan *optionSolver = new TOptionPlan[GPU_N];
// OS thread ID
CUTThread *threadID = new CUTThread[GPU_N];
int gpuBase, gpuIndex;
int i;
float time;
double delta, ref, sumDelta, sumRef, sumReserve;
printf("MonteCarloMultiGPU\n");
printf("==================\n");
printf("Parallelization method = %s\n",
use_threads ? "threaded" : "streamed");
printf("Problem scaling = %s\n", strongScaling ? "strong" : "weak");
printf("Number of GPUs = %d\n", GPU_N);
printf("Total number of options = %d\n", OPT_N);
printf("Number of paths = %d\n", PATH_N);
printf("main(): generating input data...\n");
srand(123);
for (i = 0; i < OPT_N; i++) {
optionData[i].S = randFloat(5.0f, 50.0f);
optionData[i].X = randFloat(10.0f, 25.0f);
optionData[i].T = randFloat(1.0f, 5.0f);
optionData[i].R = 0.06f;
optionData[i].V = 0.10f;
callValueGPU[i].Expected = -1.0f;
callValueGPU[i].Confidence = -1.0f;
}
printf("main(): starting %i host threads...\n", GPU_N);
// Get option count for each GPU
for (i = 0; i < GPU_N; i++) {
optionSolver[i].optionCount = OPT_N / GPU_N;
}
// Take into account cases with "odd" option counts
for (i = 0; i < (OPT_N % GPU_N); i++) {
optionSolver[i].optionCount++;
}
// Assign GPU option ranges
gpuBase = 0;
for (i = 0; i < GPU_N; i++) {
optionSolver[i].device = i;
optionSolver[i].optionData = optionData + gpuBase;
optionSolver[i].callValue = callValueGPU + gpuBase;
optionSolver[i].pathN = PATH_N;
optionSolver[i].gridSize =
adjustGridSize(optionSolver[i].device, optionSolver[i].optionCount);
gpuBase += optionSolver[i].optionCount;
}
if (use_threads || bqatest) {
// Start CPU thread for each GPU
for (gpuIndex = 0; gpuIndex < GPU_N; gpuIndex++) {
threadID[gpuIndex] = cutStartThread((CUT_THREADROUTINE)solverThread,
&optionSolver[gpuIndex]);
}
printf("main(): waiting for GPU results...\n");
cutWaitForThreads(threadID, GPU_N);
printf("main(): GPU statistics, threaded\n");
for (i = 0; i < GPU_N; i++) {
cudaDeviceProp deviceProp;
checkCudaErrors(
cudaGetDeviceProperties(&deviceProp, optionSolver[i].device));
printf("GPU Device #%i: %s\n", optionSolver[i].device, deviceProp.name);
printf("Options : %i\n", optionSolver[i].optionCount);
printf("Simulation paths: %i\n", optionSolver[i].pathN);
time = sdkGetTimerValue(&hTimer[i]);
printf("Total time (ms.): %f\n", time);
printf("Options per sec.: %f\n", OPT_N / (time * 0.001));
}
printf("main(): comparing Monte Carlo and Black-Scholes results...\n");
sumDelta = 0;
sumRef = 0;
sumReserve = 0;
for (i = 0; i < OPT_N; i++) {
BlackScholesCall(callValueBS[i], optionData[i]);
delta = fabs(callValueBS[i] - callValueGPU[i].Expected);
ref = callValueBS[i];
sumDelta += delta;
sumRef += fabs(ref);
if (delta > 1e-6) {
sumReserve += callValueGPU[i].Confidence / delta;
}
#ifdef PRINT_RESULTS
printf("BS: %f; delta: %E\n", callValueBS[i], delta);
#endif
}
sumReserve /= OPT_N;
}
if (!use_threads || bqatest) {
multiSolver(optionSolver, GPU_N);
printf("main(): GPU statistics, streamed\n");
for (i = 0; i < GPU_N; i++) {
cudaDeviceProp deviceProp;
checkCudaErrors(
cudaGetDeviceProperties(&deviceProp, optionSolver[i].device));
printf("GPU Device #%i: %s\n", optionSolver[i].device, deviceProp.name);
printf("Options : %i\n", optionSolver[i].optionCount);
printf("Simulation paths: %i\n", optionSolver[i].pathN);
}
time = sdkGetTimerValue(&hTimer[0]);
printf("\nTotal time (ms.): %f\n", time);
printf("\tNote: This is elapsed time for all to compute.\n");
printf("Options per sec.: %f\n", OPT_N / (time * 0.001));
printf("main(): comparing Monte Carlo and Black-Scholes results...\n");
sumDelta = 0;
sumRef = 0;
sumReserve = 0;
for (i = 0; i < OPT_N; i++) {
BlackScholesCall(callValueBS[i], optionData[i]);
delta = fabs(callValueBS[i] - callValueGPU[i].Expected);
ref = callValueBS[i];
sumDelta += delta;
sumRef += fabs(ref);
if (delta > 1e-6) {
sumReserve += callValueGPU[i].Confidence / delta;
}
#ifdef PRINT_RESULTS
printf("BS: %f; delta: %E\n", callValueBS[i], delta);
#endif
}
sumReserve /= OPT_N;
}
#ifdef DO_CPU
printf("main(): running CPU MonteCarlo...\n");
TOptionValue callValueCPU;
sumDelta = 0;
sumRef = 0;
for (i = 0; i < OPT_N; i++) {
MonteCarloCPU(callValueCPU, optionData[i], NULL, PATH_N);
delta = fabs(callValueCPU.Expected - callValueGPU[i].Expected);
ref = callValueCPU.Expected;
sumDelta += delta;
sumRef += fabs(ref);
printf("Exp : %f | %f\t", callValueCPU.Expected, callValueGPU[i].Expected);
printf("Conf: %f | %f\n", callValueCPU.Confidence,
callValueGPU[i].Confidence);
}
printf("L1 norm: %E\n", sumDelta / sumRef);
#endif
printf("Shutting down...\n");
for (int i = 0; i < GPU_N; i++) {
sdkStartTimer(&hTimer[i]);
checkCudaErrors(cudaSetDevice(i));
}
delete[] optionSolver;
delete[] callValueBS;
delete[] callValueGPU;
delete[] optionData;
delete[] threadID;
delete[] hTimer;
printf("Test Summary...\n");
printf("L1 norm : %E\n", sumDelta / sumRef);
printf("Average reserve: %f\n", sumReserve);
printf(
"\nNOTE: The CUDA Samples are not meant for performance measurements. "
"Results may vary when GPU Boost is enabled.\n\n");
printf(sumReserve > 1.0f ? "Test passed\n" : "Test failed!\n");
exit(sumReserve > 1.0f ? EXIT_SUCCESS : EXIT_FAILURE);
}