-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmodels.py
106 lines (83 loc) · 2.9 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""
UNet
The main UNet model implementation
"""
import torch
import torch.nn as nn
# Utility Functions
''' when filter kernel= 3x3, padding=1 makes in&out matrix same size'''
def conv_bn_leru(in_channels, out_channels, kernel_size=3, stride=1, padding=1):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
)
def down_pooling():
return nn.MaxPool2d(2)
def up_pooling(in_channels, out_channels, kernel_size=2, stride=2):
return nn.Sequential(
nn.ConvTranspose2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
# UNet class
class UNet(nn.Module):
def __init__(self, n_channels, n_classes):
super().__init__()
# go down
self.conv1 = conv_bn_leru(n_channels, 64)
self.conv2 = conv_bn_leru(64, 128)
self.conv3 = conv_bn_leru(128, 256)
self.conv4 = conv_bn_leru(256, 512)
self.conv5 = conv_bn_leru(512, 1024)
self.down_pooling = nn.MaxPool2d(2)
# dropout
self.dropout = nn.Dropout(0.5)
# go up
self.up_pool6 = up_pooling(1024, 512)
self.conv6 = conv_bn_leru(1024, 512)
self.up_pool7 = up_pooling(512, 256)
self.conv7 = conv_bn_leru(512, 256)
self.up_pool8 = up_pooling(256, 128)
self.conv8 = conv_bn_leru(256, 128)
self.up_pool9 = up_pooling(128, 64)
self.conv9 = conv_bn_leru(128, 64)
# output
self.conv10 = nn.Conv2d(64, n_classes, 1)
# test weight init
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_out')
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x):
# go down
x1 = self.conv1(x)
p1 = self.down_pooling(x1)
x2 = self.conv2(p1)
p2 = self.down_pooling(x2)
x3 = self.conv3(p2)
p3 = self.down_pooling(x3)
x4 = self.conv4(p3)
p4 = self.down_pooling(x4)
x5 = self.conv5(p4)
x5 = self.dropout(x5)
# go up
p6 = self.up_pool6(x5)
x6 = torch.cat([p6, x4], dim=1)
x6 = self.conv6(x6)
x6 = self.dropout(x6)
p7 = self.up_pool7(x6)
x7 = torch.cat([p7, x3], dim=1)
x7 = self.conv7(x7)
p8 = self.up_pool8(x7)
x8 = torch.cat([p8, x2], dim=1)
x8 = self.conv8(x8)
p9 = self.up_pool9(x8)
x9 = torch.cat([p9, x1], dim=1)
x9 = self.conv9(x9)
output = self.conv10(x9)
return output