forked from xuerenlv/social-lstm-tf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
social_model.py
399 lines (323 loc) · 19.3 KB
/
social_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
'''
Social LSTM model implementation using Tensorflow
Social LSTM Paper: http://vision.stanford.edu/pdf/CVPR16_N_LSTM.pdf
Author : Anirudh Vemula
Date: 17th October 2016
'''
import tensorflow as tf
import numpy as np
from tensorflow.python.ops import rnn_cell
from grid import getSequenceGridMask
import ipdb
class SocialModel():
def __init__(self, args, infer=False):
'''
Initialisation function for the class SocialModel
params:
args : Contains arguments required for the model creation
'''
# If sampling new trajectories, then infer mode
if infer:
# Sample one position at a time
args.batch_size = 1
args.seq_length = 1
# Store the arguments
self.args = args
self.infer = infer
# Store rnn size and grid_size
self.rnn_size = args.rnn_size
self.grid_size = args.grid_size
# Maximum number of peds
self.maxNumPeds = args.maxNumPeds
# NOTE : For now assuming, batch_size is always 1. That is the input
# to the model is always a sequence of frames
# Construct the basicLSTMCell recurrent unit with a dimension given by args.rnn_size
with tf.name_scope("LSTM_cell"):
cell = rnn_cell.BasicLSTMCell(args.rnn_size, state_is_tuple=False)
# placeholders for the input data and the target data
# A sequence contains an ordered set of consecutive frames
# Each frame can contain a maximum of 'args.maxNumPeds' number of peds
# For each ped we have their (pedID, x, y) positions as input
self.input_data = tf.placeholder(tf.float32, [args.seq_length, args.maxNumPeds, 3], name="input_data")
# target data would be the same format as input_data except with
# one time-step ahead
self.target_data = tf.placeholder(tf.float32, [args.seq_length, args.maxNumPeds, 3], name="target_data")
# Grid data would be a binary matrix which encodes whether a pedestrian is present in
# a grid cell of other pedestrian
self.grid_data = tf.placeholder(tf.float32, [args.seq_length, args.maxNumPeds, args.maxNumPeds, args.grid_size*args.grid_size], name="grid_data")
# Variable to hold the value of the learning rate
self.lr = tf.Variable(args.learning_rate, trainable=False, name="learning_rate")
# Output dimension of the model
self.output_size = 5
# Define embedding and output layers
self.define_embedding_and_output_layers(args)
# Define LSTM states for each pedestrian
with tf.variable_scope("LSTM_states"):
self.LSTM_states = tf.zeros([args.maxNumPeds, cell.state_size], name="LSTM_states")
self.initial_states = tf.split(0, args.maxNumPeds, self.LSTM_states)
# Define hidden output states for each pedestrian
with tf.variable_scope("Hidden_states"):
# self.output_states = tf.zeros([args.maxNumPeds, cell.output_size], name="hidden_states")
self.output_states = tf.split(0, args.maxNumPeds, tf.zeros([args.maxNumPeds, cell.output_size]))
# List of tensors each of shape args.maxNumPedsx3 corresponding to each frame in the sequence
with tf.name_scope("frame_data_tensors"):
# frame_data = tf.split(0, args.seq_length, self.input_data, name="frame_data")
frame_data = [tf.squeeze(input_, [0]) for input_ in tf.split(0, args.seq_length, self.input_data)]
with tf.name_scope("frame_target_data_tensors"):
# frame_target_data = tf.split(0, args.seq_length, self.target_data, name="frame_target_data")
frame_target_data = [tf.squeeze(target_, [0]) for target_ in tf.split(0, args.seq_length, self.target_data)]
with tf.name_scope("grid_frame_data_tensors"):
# This would contain a list of tensors each of shape MNP x MNP x (GS**2) encoding the mask
# grid_frame_data = tf.split(0, args.seq_length, self.grid_data, name="grid_frame_data")
grid_frame_data = [tf.squeeze(input_, [0]) for input_ in tf.split(0, args.seq_length, self.grid_data)]
# Cost
with tf.name_scope("Cost_related_stuff"):
self.cost = tf.constant(0.0, name="cost")
self.counter = tf.constant(0.0, name="counter")
self.increment = tf.constant(1.0, name="increment")
# Containers to store output distribution parameters
with tf.name_scope("Distribution_parameters_stuff"):
# self.initial_output = tf.zeros([args.maxNumPeds, self.output_size], name="distribution_parameters")
self.initial_output = tf.split(0, args.maxNumPeds, tf.zeros([args.maxNumPeds, self.output_size]))
# Tensor to represent non-existent ped
with tf.name_scope("Non_existent_ped_stuff"):
nonexistent_ped = tf.constant(0.0, name="zero_ped")
# Iterate over each frame in the sequence
for seq, frame in enumerate(frame_data):
print "Frame number", seq
current_frame_data = frame # MNP x 3 tensor
current_grid_frame_data = grid_frame_data[seq] # MNP x MNP x (GS**2) tensor
# social_tensor = self.getSocialTensor(current_grid_frame_data, self.output_states) # MNP x (GS**2 * RNN_size)
# NOTE: Using a tensor of zeros as the social tensor
social_tensor = tf.zeros([args.maxNumPeds, args.grid_size*args.grid_size*args.rnn_size])
for ped in range(args.maxNumPeds):
print "Pedestrian Number", ped
# pedID of the current pedestrian
pedID = current_frame_data[ped, 0]
with tf.name_scope("extract_input_ped"):
# Extract x and y positions of the current ped
self.spatial_input = tf.slice(current_frame_data, [ped, 1], [1, 2]) # Tensor of shape (1,2)
# Extract the social tensor of the current ped
self.tensor_input = tf.slice(social_tensor, [ped, 0], [1, args.grid_size*args.grid_size*args.rnn_size]) # Tensor of shape (1, g*g*r)
with tf.name_scope("embeddings_operations"):
# Embed the spatial input
embedded_spatial_input = tf.nn.relu(tf.nn.xw_plus_b(self.spatial_input, self.embedding_w, self.embedding_b))
# Embed the tensor input
embedded_tensor_input = tf.nn.relu(tf.nn.xw_plus_b(self.tensor_input, self.embedding_t_w, self.embedding_t_b))
with tf.name_scope("concatenate_embeddings"):
# Concatenate the embeddings
complete_input = tf.concat(1, [embedded_spatial_input, embedded_tensor_input])
# One step of LSTM
with tf.variable_scope("LSTM") as scope:
if seq > 0 or ped > 0:
scope.reuse_variables()
self.output_states[ped], self.initial_states[ped] = cell(complete_input, self.initial_states[ped])
# with tf.name_scope("reshape_output"):
# Store the output hidden state for the current pedestrian
# self.output_states[ped] = tf.reshape(tf.concat(1, output), [-1, args.rnn_size])
# print self.output_states[ped]
# Apply the linear layer. Output would be a tensor of shape 1 x output_size
with tf.name_scope("output_linear_layer"):
self.initial_output[ped] = tf.nn.xw_plus_b(self.output_states[ped], self.output_w, self.output_b)
# with tf.name_scope("store_distribution_parameters"):
# # Store the distribution parameters for the current ped
# self.initial_output[ped] = output
with tf.name_scope("extract_target_ped"):
# Extract x and y coordinates of the target data
# x_data and y_data would be tensors of shape 1 x 1
[x_data, y_data] = tf.split(1, 2, tf.slice(frame_target_data[seq], [ped, 1], [1, 2]))
with tf.name_scope("get_coef"):
# Extract coef from output of the linear output layer
[o_mux, o_muy, o_sx, o_sy, o_corr] = self.get_coef(self.initial_output[ped])
with tf.name_scope("calculate_loss"):
# Calculate loss for the current ped
lossfunc = self.get_lossfunc(o_mux, o_muy, o_sx, o_sy, o_corr, x_data, y_data)
with tf.name_scope("increment_cost"):
# If it is a non-existent ped, it should not contribute to cost
self.cost = tf.select(tf.equal(pedID, nonexistent_ped), self.cost, tf.add(self.cost, lossfunc))
self.counter = tf.select(tf.not_equal(pedID, nonexistent_ped), tf.add(self.counter, self.increment), self.counter)
with tf.name_scope("mean_cost"):
# Mean of the cost
self.cost = tf.div(self.cost, self.counter)
# Get all trainable variables
tvars = tf.trainable_variables()
# Get the final LSTM states
self.final_states = tf.concat(0, self.initial_states)
# Get the final distribution parameters
self.final_output = self.initial_output
# Compute gradients
self.gradients = tf.gradients(self.cost, tvars)
# Clip the gradients
grads, _ = tf.clip_by_global_norm(self.gradients, args.grad_clip)
# Define the optimizer
optimizer = tf.train.RMSPropOptimizer(self.lr)
# The train operator
self.train_op = optimizer.apply_gradients(zip(grads, tvars))
# Merge all summmaries
# merged_summary_op = tf.merge_all_summaries()
def define_embedding_and_output_layers(self, args):
# Define variables for the spatial coordinates embedding layer
with tf.variable_scope("coordinate_embedding"):
self.embedding_w = tf.get_variable("embedding_w", [2, args.embedding_size], initializer=tf.truncated_normal_initializer(stddev=0.01))
self.embedding_b = tf.get_variable("embedding_b", [args.embedding_size], initializer=tf.constant_initializer(0.01))
# Define variables for the social tensor embedding layer
with tf.variable_scope("tensor_embedding"):
self.embedding_t_w = tf.get_variable("embedding_t_w", [args.grid_size*args.grid_size*args.rnn_size, args.embedding_size], initializer=tf.truncated_normal_initializer(stddev=0.01))
self.embedding_t_b = tf.get_variable("embedding_t_b", [args.embedding_size], initializer=tf.constant_initializer(0.01))
# Define variables for the output linear layer
with tf.variable_scope("output_layer"):
self.output_w = tf.get_variable("output_w", [args.rnn_size, self.output_size], initializer=tf.truncated_normal_initializer(stddev=0.01))
self.output_b = tf.get_variable("output_b", [self.output_size], initializer=tf.constant_initializer(0.01))
def tf_2d_normal(self, x, y, mux, muy, sx, sy, rho):
'''
Function that implements the PDF of a 2D normal distribution
params:
x : input x points
y : input y points
mux : mean of the distribution in x
muy : mean of the distribution in y
sx : std dev of the distribution in x
sy : std dev of the distribution in y
rho : Correlation factor of the distribution
'''
# eq 3 in the paper
# and eq 24 & 25 in Graves (2013)
# Calculate (x - mux) and (y-muy)
normx = tf.sub(x, mux)
normy = tf.sub(y, muy)
# Calculate sx*sy
sxsy = tf.mul(sx, sy)
# Calculate the exponential factor
z = tf.square(tf.div(normx, sx)) + tf.square(tf.div(normy, sy)) - 2*tf.div(tf.mul(rho, tf.mul(normx, normy)), sxsy)
negRho = 1 - tf.square(rho)
# Numerator
result = tf.exp(tf.div(-z, 2*negRho))
# Normalization constant
denom = 2 * np.pi * tf.mul(sxsy, tf.sqrt(negRho))
# Final PDF calculation
result = tf.div(result, denom)
return result
def get_lossfunc(self, z_mux, z_muy, z_sx, z_sy, z_corr, x_data, y_data):
'''
Function to calculate given a 2D distribution over x and y, and target data
of observed x and y points
params:
z_mux : mean of the distribution in x
z_muy : mean of the distribution in y
z_sx : std dev of the distribution in x
z_sy : std dev of the distribution in y
z_rho : Correlation factor of the distribution
x_data : target x points
y_data : target y points
'''
step = tf.constant(1e-3, dtype=tf.float32, shape=(1, 1))
# Calculate the PDF of the data w.r.t to the distribution
result0_1 = self.tf_2d_normal(x_data, y_data, z_mux, z_muy, z_sx, z_sy, z_corr)
result0_2 = self.tf_2d_normal(tf.add(x_data, step), y_data, z_mux, z_muy, z_sx, z_sy, z_corr)
result0_3 = self.tf_2d_normal(x_data, tf.add(y_data, step), z_mux, z_muy, z_sx, z_sy, z_corr)
result0_4 = self.tf_2d_normal(tf.add(x_data, step), tf.add(y_data, step), z_mux, z_muy, z_sx, z_sy, z_corr)
result0 = tf.div(tf.add(tf.add(tf.add(result0_1, result0_2), result0_3), result0_4), tf.constant(4.0, dtype=tf.float32, shape=(1, 1)))
result0 = tf.mul(tf.mul(result0, step), step)
# For numerical stability purposes
epsilon = 1e-20
# Apply the log operation
result1 = -tf.log(tf.maximum(result0, epsilon)) # Numerical stability
# Sum up all log probabilities for each data point
return tf.reduce_sum(result1)
def get_coef(self, output):
# eq 20 -> 22 of Graves (2013)
z = output
# Split the output into 5 parts corresponding to means, std devs and corr
z_mux, z_muy, z_sx, z_sy, z_corr = tf.split(1, 5, z)
# The output must be exponentiated for the std devs
z_sx = tf.exp(z_sx)
z_sy = tf.exp(z_sy)
# Tanh applied to keep it in the range [-1, 1]
z_corr = tf.tanh(z_corr)
return [z_mux, z_muy, z_sx, z_sy, z_corr]
def getSocialTensor(self, grid_frame_data, output_states):
'''
Computes the social tensor for all the maxNumPeds in the frame
params:
grid_frame_data : A tensor of shape MNP x MNP x (GS**2)
output_states : A list of tensors each of shape 1 x RNN_size of length MNP
'''
# Create a zero tensor of shape MNP x (GS**2) x RNN_size
social_tensor = tf.zeros([self.args.maxNumPeds, self.grid_size*self.grid_size, self.rnn_size], name="social_tensor")
# Create a list of zero tensors each of shape 1 x (GS**2) x RNN_size of length MNP
social_tensor = tf.split(0, self.args.maxNumPeds, social_tensor)
# Concatenate list of hidden states to form a tensor of shape MNP x RNN_size
hidden_states = tf.concat(0, output_states)
# Split the grid_frame_data into grid_data for each pedestrians
# Consists of a list of tensors each of shape 1 x MNP x (GS**2) of length MNP
grid_frame_ped_data = tf.split(0, self.args.maxNumPeds, grid_frame_data)
# Squeeze tensors to form MNP x (GS**2) matrices
grid_frame_ped_data = [tf.squeeze(input_, [0]) for input_ in grid_frame_ped_data]
# For each pedestrian
for ped in range(self.args.maxNumPeds):
# Compute social tensor for the current pedestrian
with tf.name_scope("tensor_calculation"):
social_tensor_ped = tf.matmul(tf.transpose(grid_frame_ped_data[ped]), hidden_states)
social_tensor[ped] = tf.reshape(social_tensor_ped, [1, self.grid_size*self.grid_size, self.rnn_size])
# Concatenate the social tensor from a list to a tensor of shape MNP x (GS**2) x RNN_size
social_tensor = tf.concat(0, social_tensor)
# Reshape the tensor to match the dimensions MNP x (GS**2 * RNN_size)
social_tensor = tf.reshape(social_tensor, [self.args.maxNumPeds, self.grid_size*self.grid_size*self.rnn_size])
return social_tensor
def sample_gaussian_2d(self, mux, muy, sx, sy, rho):
'''
Function to sample a point from a given 2D normal distribution
params:
mux : mean of the distribution in x
muy : mean of the distribution in y
sx : std dev of the distribution in x
sy : std dev of the distribution in y
rho : Correlation factor of the distribution
'''
# Extract mean
mean = [mux, muy]
# Extract covariance matrix
cov = [[sx*sx, rho*sx*sy], [rho*sx*sy, sy*sy]]
# Sample a point from the multivariate normal distribution
x = np.random.multivariate_normal(mean, cov, 1)
return x[0][0], x[0][1]
def sample(self, sess, traj, grid, dimensions, true_traj, num=10):
# traj is a sequence of frames (of length obs_length)
# so traj shape is (obs_length x maxNumPeds x 3)
# grid is a tensor of shape obs_length x maxNumPeds x maxNumPeds x (gs**2)
states = sess.run(self.LSTM_states)
# print "Fitting"
# For each frame in the sequence
for index, frame in enumerate(traj[:-1]):
data = np.reshape(frame, (1, self.maxNumPeds, 3))
target_data = np.reshape(traj[index+1], (1, self.maxNumPeds, 3))
grid_data = np.reshape(grid[index, :], (1, self.maxNumPeds, self.maxNumPeds, self.grid_size*self.grid_size))
feed = {self.input_data: data, self.LSTM_states: states, self.grid_data: grid_data, self.target_data: target_data}
[states, cost] = sess.run([self.final_states, self.cost], feed)
# print cost
ret = traj
last_frame = traj[-1]
prev_data = np.reshape(last_frame, (1, self.maxNumPeds, 3))
prev_grid_data = np.reshape(grid[-1], (1, self.maxNumPeds, self.maxNumPeds, self.grid_size*self.grid_size))
prev_target_data = np.reshape(true_traj[traj.shape[0]], (1, self.maxNumPeds, 3))
# print "Prediction"
# Prediction
for t in range(num):
feed = {self.input_data: prev_data, self.LSTM_states: states, self.grid_data: prev_grid_data, self.target_data: prev_target_data}
[output, states, cost] = sess.run([self.final_output, self.final_states, self.cost], feed)
# print cost
# Output is a list of lists where the inner lists contain matrices of shape 1x5. The outer list contains only one element (since seq_length=1) and the inner list contains maxNumPeds elements
# output = output[0]
newpos = np.zeros((1, self.maxNumPeds, 3))
for pedindex, pedoutput in enumerate(output):
[o_mux, o_muy, o_sx, o_sy, o_corr] = np.split(pedoutput[0], 5, 0)
mux, muy, sx, sy, corr = o_mux[0], o_muy[0], np.exp(o_sx[0]), np.exp(o_sy[0]), np.tanh(o_corr[0])
next_x, next_y = self.sample_gaussian_2d(mux, muy, sx, sy, corr)
newpos[0, pedindex, :] = [prev_data[0, pedindex, 0], next_x, next_y]
ret = np.vstack((ret, newpos))
prev_data = newpos
prev_grid_data = getSequenceGridMask(prev_data, dimensions, self.args.neighborhood_size, self.grid_size)
if t != num - 1:
prev_target_data = np.reshape(true_traj[traj.shape[0] + t + 1], (1, self.maxNumPeds, 3))
# The returned ret is of shape (obs_length+pred_length) x maxNumPeds x 3
return ret