-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
322 lines (227 loc) · 11.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import logging
logging.getLogger().setLevel(logging.CRITICAL)
import torch
import numpy as np
import gymnasium as gym
import random
import pickle
import time
from symphony import Symphony, log_file
#==============================================================================================
#==============================================================================================
#===================================SCRIPT FOR TRAINING========================================
#==============================================================================================
#==============================================================================================
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
#global parameters
# environment type.
option = 3
explore_time = 5120
limit_step = 1000 #max steps per episode
limit_eval = 1000 #max steps per evaluation
num_episodes = 1000000
start_episode = 1 #number for the identification of the current episode
episode_rewards_all, episode_steps_all, test_rewards, Q_learning, average_steps = [], [], [], False, 0
terminal_reward = False
if option == -1:
env = gym.make('Pendulum-v1', render_mode="human")
env_test = gym.make('Pendulum-v1')
elif option == 0:
env = gym.make('MountainCarContinuous-v0')
env_test = gym.make('MountainCarContinuous-v0')
elif option == 1:
env = gym.make('HalfCheetah-v4', render_mode="human")
env_test = gym.make('HalfCheetah-v4')
elif option == 2:
env = gym.make('Walker2d-v4')
env_test = gym.make('Walker2d-v4')
elif option == 3:
env = gym.make('Humanoid-v4')
env_test = gym.make('Humanoid-v4')
elif option == 4:
limit_step = 300
limit_eval = 300
env = gym.make('HumanoidStandup-v4')
env_test = gym.make('HumanoidStandup-v4')
elif option == 5:
env = gym.make('Ant-v4', render_mode="human")
env_test = gym.make('Ant-v4')
elif option == 6:
env = gym.make('BipedalWalker-v3', render_mode="human")
env_test = gym.make('BipedalWalker-v3')
terminal_reward = True
elif option == 7:
env = gym.make('BipedalWalkerHardcore-v3')
env_test = gym.make('BipedalWalkerHardcore-v3')
terminal_reward = True
elif option == 8:
env = gym.make('LunarLanderContinuous-v2')
env_test = gym.make('LunarLanderContinuous-v2')
terminal_reward = True
elif option == 9:
limit_step = 300
limit_eval = 200
env = gym.make('Pusher-v4')
env_test = gym.make('Pusher-v4')
elif option == 10:
burst = True
env = gym.make('Swimmer-v4')
env_test = gym.make('Swimmer-v4')
elif option == 11:
env = gym.make('Hopper-v4')
env_test = gym.make('Hopper-v4')
state_dim = env.observation_space.shape[0]
action_dim= env.action_space.shape[0]
print('action space high', env.action_space.high)
max_action = torch.FloatTensor(env.action_space.high) if env.action_space.is_bounded() else 1.0
algo = Symphony(state_dim, action_dim, device, max_action)
#==============================================================================================
#==============================================================================================
#==========================================RECOVERY===========================================
#==============================================================================================
#==============================================================================================
def hard_recovery(algo, replay_buffer, size):
algo.replay_buffer.states[:size] = replay_buffer.states[:size]
algo.replay_buffer.actions[:size] = replay_buffer.actions[:size]
algo.replay_buffer.rewards[:size] = replay_buffer.rewards[:size]
algo.replay_buffer.next_states[:size] = replay_buffer.next_states[:size]
algo.replay_buffer.not_dones_gamma[:size] = replay_buffer.not_dones_gamma[:size]
algo.replay_buffer.r_scale = replay_buffer.r_scale
algo.replay_buffer.indices[:size] = replay_buffer.indices[:size]
algo.replay_buffer.length = len(replay_buffer.indices)
#==============================================================================================
#==============================================================================================
#==========================================TESTING=============================================
#==============================================================================================
#==============================================================================================
#testing model
def testing(env, limit_step, test_episodes, current_step=0, save_log=False):
if test_episodes<1: return
print("Validation... ", test_episodes, " epsodes")
episode_return = []
for test_episode in range(test_episodes):
state = env.reset()[0]
rewards = []
for steps in range(1,limit_step+1):
r1, r2, r3 = random.randint(0,2**32-1), random.randint(0,2**32-1), random.randint(0,2**32-1)
torch.manual_seed(r1)
np.random.seed(r2)
random.seed(r3)
action = algo.select_action(state)
next_state, reward, done, truncated, info = env.step(action)
rewards.append(reward)
state = next_state
if done or truncated: break
episode_return.append(np.sum(rewards))
validate_return = np.mean(episode_return[-100:])
print(f"trial {test_episode+1}:, Rtrn = {episode_return[test_episode]:.2f}, Average 100 = {validate_return:.2f}, steps: {steps}")
if save_log: log_file.write(str(current_step) + " : " + str(round(validate_return.item(), 2)) + "\n")
#==============================================================================================
#==============================================================================================
#=====================LOADING EXISTING MODELS, BUFFER and PARAMETERS===========================
#==============================================================================================
#==============================================================================================
total_steps = 0
try:
print("loading buffer...")
with open('data', 'rb') as file:
dict = pickle.load(file)
algo.replay_buffer = dict['buffer']
#hard_recovery(algo, dict['buffer'], 600000) # comment the previous line and chose a memory size to recover from old buffer
algo.q_next_ema = dict['q_next_ema']
episode_rewards_all = dict['episode_rewards_all']
episode_steps_all = dict['episode_steps_all']
total_steps = dict['total_steps']
average_steps = dict['average_steps']
if len(algo.replay_buffer)>=explore_time and not Q_learning: Q_learning = True
print('buffer loaded, buffer length', len(algo.replay_buffer))
start_episode = len(episode_steps_all)
except:
print("problem during loading buffer")
try:
print("loading models...")
algo.nets.load_state_dict(torch.load('nets_model.pt', weights_only=True))
algo.nets_target.load_state_dict(torch.load('nets_target_model.pt', weights_only=True))
#algo.nets_optimizer.load_state_dict(torch.load('nets_optimizer.pt'))
print('models loaded')
#testing(env_test, limit_eval, 10)
except:
print("problem during loading models")
#==============================================================================================
#==============================================================================================
#========================================EXPLORATION===========================================
#==============================================================================================
#==============================================================================================
if not Q_learning:
log_file.clean()
while not Q_learning:
rewards = []
state = env_test.reset()[0]
episode_steps = 0
for steps in range(1, limit_step+1):
episode_steps +=1
r1, r2, r3 = random.randint(0,2**32-1), random.randint(0,2**32-1), random.randint(0,2**32-1)
torch.manual_seed(r1)
np.random.seed(r2)
random.seed(r3)
action = algo.select_action(state, explore=True)
next_state, reward, done, truncated, info = env_test.step(action)
rewards.append(reward)
if done and abs(reward)%100==0: reward = reward/50
if algo.replay_buffer.length>=explore_time and not Q_learning: Q_learning = True; break
algo.replay_buffer.add(state, action, reward, next_state, done)
if done: break
state = next_state
episode_rewards_all.append(np.sum(rewards))
episode_steps_all.append(episode_steps)
average_steps = np.mean(episode_steps_all)
Return = np.sum(rewards)
print(f" Rtrn = {Return:.2f}")
#==============================================================================================
#==============================================================================================
#=========================================TRAINING=============================================
#==============================================================================================
#==============================================================================================
stop = average_steps
print("started training")
#print(f"ReSine scale:\n {algo.actor.ffw[0].ffw[3].scale.cpu().detach().numpy()}")
for i in range(start_episode, num_episodes):
rewards = []
state = env.reset()[0]
episode_steps = 0
#----------------------------pre-processing------------------------------
#--------------------2. CPU/GPU cooling ------------------
#time.sleep(0.3)
for steps in range(1, limit_step+1):
algo.train()
r1, r2, r3 = random.randint(0,2**32-1), random.randint(0,2**32-1), random.randint(0,2**32-1)
torch.manual_seed(r1)
np.random.seed(r2)
random.seed(r3)
episode_steps += 1
total_steps += 1
# save models, data
if (total_steps>=1250 and total_steps%1250==0):
part = ""
#part = "_"+str(total_steps/1000) if total_steps%300000==0 else ""
testing(env_test, limit_step=limit_eval, test_episodes=50, current_step=total_steps, save_log=True)
if total_steps%100000==0:
print("saving data...")
torch.save(algo.nets.state_dict(), 'nets_model'+ part +'.pt')
torch.save(algo.nets_target.state_dict(), 'nets_target_model'+ part +'.pt')
#torch.save(algo.nets_optimizer.state_dict(), "nets_optimizer.pt")
with open('data'+ part, 'wb') as file:
pickle.dump({'buffer': algo.replay_buffer, 'q_next_ema': algo.q_next_ema, 'episode_rewards_all':episode_rewards_all, 'episode_steps_all':episode_steps_all, 'total_steps': total_steps, 'average_steps': average_steps}, file)
print("...saved")
action = algo.select_action(state)
next_state, reward, done, truncated, info = env.step(action)
rewards.append(reward)
if done and abs(reward)%100==0: reward = reward/50
algo.replay_buffer.add(state, action, reward, next_state, done)
if done: break
state = next_state
episode_rewards_all.append(np.sum(rewards))
episode_steps_all.append(episode_steps)
print(f"Ep {i}: Rtrn = {episode_rewards_all[-1]:.2f} | ep steps = {episode_steps} | total_steps = {total_steps}")
log_file.write_opt(str(i) + " : " + str(round(episode_rewards_all[-1], 2)) + " : step : " + str(total_steps) + "\n")