diff --git a/examples/elementwise/example_elementwise_add.py b/examples/elementwise/example_elementwise_add.py index 464312ced..72459459b 100644 --- a/examples/elementwise/example_elementwise_add.py +++ b/examples/elementwise/example_elementwise_add.py @@ -3,13 +3,21 @@ import torch import tilelang import tilelang.language as T -from tilelang.autotuner import AutoTuner def ref_program(x, y): return x + y +def get_configs(): + block_M = [64, 128, 256] + block_N = [64, 128, 256] + threads = [64, 128, 256] + configs = list(itertools.product(block_M, block_N, threads)) + return [{"block_M": bm, "block_N": bn, "threads": th} for bm, bn, th in configs] + + +@tilelang.autotune(configs=get_configs()) @tilelang.jit(out_idx=[-1]) def elementwise_add(M, N, block_M, block_N, in_dtype, out_dtype, threads): @T.prim_func @@ -30,47 +38,12 @@ def elem_add(A: T.Tensor((M, N), in_dtype), B: T.Tensor((M, N), in_dtype), C: T. return elem_add -def get_configs(M, N): - block_M = [64, 128, 256] - block_N = [64, 128, 256] - threads = [64, 128, 256] - configs = list(itertools.product(block_M, block_N, threads)) - return [{"block_M": bm, "block_N": bn, "threads": th} for bm, bn, th in configs] - - -def get_best_config(M, N): - def kernel(block_M=None, block_N=None, threads=None): - return elementwise_add(M, N, block_M, block_N, "float32", "float32", threads) - - autotuner = ( - AutoTuner.from_kernel(kernel=kernel, configs=get_configs(M, N)) - .set_compile_args( - out_idx=[-1], - target="cuda", - ) - .set_profile_args( - supply_type=tilelang.TensorSupplyType.Auto, - ref_prog=ref_program, - skip_check=False, - ) - ) - return autotuner.run(warmup=3, rep=20) - - -def main(): - parser = argparse.ArgumentParser() - parser.add_argument("--m", type=int, default=1024) - parser.add_argument("--n", type=int, default=1024) - parser.add_argument("--use_autotune", action="store_true", default=False) - args, _ = parser.parse_known_args() - M, N = args.m, args.n - +def main(M=1024, N=1024, use_autotune=False): a = torch.randn(M, N, dtype=torch.float32, device="cuda") b = torch.randn(M, N, dtype=torch.float32, device="cuda") - if args.use_autotune: - result = get_best_config(M, N) - kernel = result.kernel + if use_autotune: + kernel = elementwise_add(M, N, in_dtype="float32", out_dtype="float32") else: # Default config config = {"block_M": 32, "block_N": 32, "threads": 128} @@ -81,4 +54,9 @@ def main(): if __name__ == "__main__": - main() + parser = argparse.ArgumentParser() + parser.add_argument("--m", type=int, default=1024) + parser.add_argument("--n", type=int, default=1024) + parser.add_argument("--use_autotune", action="store_true", default=False) + args, _ = parser.parse_known_args() + main(args.m, args.n, args.use_autotune) diff --git a/examples/elementwise/test_example_elementwise.py b/examples/elementwise/test_example_elementwise.py index f1668f4aa..24f675cd6 100644 --- a/examples/elementwise/test_example_elementwise.py +++ b/examples/elementwise/test_example_elementwise.py @@ -6,5 +6,9 @@ def test_example_elementwise_add(): example_elementwise_add.main() +def test_example_elementwise_add_autotune(): + example_elementwise_add.main(use_autotune=True) + + if __name__ == "__main__": tilelang.testing.main()