-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
108 lines (78 loc) · 3.65 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import random
from envs import GomokuEnv
from players import *
def evaluate(env, players, num_plays):
def play(players, num_plays):
def play_once():
state = env.reset()
while(True):
action = players[state.cur_player].move(state)
state, reward, done, _ = env.step(action)
if done:
return reward if state.cur_player == 1 else -reward
stats = [0] * 3
for _ in range(num_plays):
stats[play_once()] += 1
return stats[1], stats[-1], stats[0]
result = play(players, num_plays)
print("-- 1P: ", "#Win={}, #Lose={}, #Draw={}".format(result[0], result[1], result[2]))
result = play(players[::-1], num_plays)
print("-- 2P: ", "#Win={}, #Lose={}, #Draw={}".format(result[1], result[0], result[2]))
print()
if __name__ == '__main__':
env = GomokuEnv(3, 3)
print("Random vs Random")
evaluate(env, (RandomPlayer(), RandomPlayer()), 100)
from models.td import train
from models import sarsa, q_learning
Q1 = train(env, sarsa.build_fn, 10000)
Q2 = train(env, q_learning.build_fn, 10000)
print("Sarsa vs Random")
evaluate(env, (TDPlayer(Q1), RandomPlayer()), 100)
print("Q-Learning vs Random")
evaluate(env, (TDPlayer(Q2), RandomPlayer()), 100)
from models import reinforce, reinforce_baseline, actor_critic
"""
Note: Since the variance of REINFORCE(w/o baseline) is quite large, it cannot be trainning for too long, or the gradient might be exploded.
"""
F1 = reinforce.train(env, 1000)
F2 = reinforce_baseline.train(env, 10000)
F3 = actor_critic.train(env, 10000)
print("REINFORCE vs Random")
evaluate(env, (PolicyGradientPlayer(F1), RandomPlayer()), 100)
print("REINFORCE(with Baseline) vs Random")
evaluate(env, (PolicyGradientPlayer(F2), RandomPlayer()), 100)
print("Actor-Critic vs Random")
evaluate(env, (PolicyGradientPlayer(F3), RandomPlayer()), 100)
print("MCTSPlayer vs Random")
evaluate(env, (MCTSPlayer(1000), RandomPlayer()), 10)
print("Sarsa vs Q-learning")
evaluate(env, (TDPlayer(Q1), TDPlayer(Q2)), 100)
print("REINFORCE vs Sarsa")
evaluate(env, (PolicyGradientPlayer(F1), TDPlayer(Q1)), 100)
print("REINFORCE vs Q-learning")
evaluate(env, (PolicyGradientPlayer(F1), TDPlayer(Q2)), 100)
print("REINFORCE(with Baseline) vs Sarsa")
evaluate(env, (PolicyGradientPlayer(F2), TDPlayer(Q1)), 100)
print("REINFORCE(with Baseline) vs Q-learning")
evaluate(env, (PolicyGradientPlayer(F2), TDPlayer(Q2)), 100)
print("REINFORCE(with Baseline) vs REINFORCE")
evaluate(env, (PolicyGradientPlayer(F2), PolicyGradientPlayer(F1)), 100)
print("Actor-Critic vs Sarsa")
evaluate(env, (PolicyGradientPlayer(F3), TDPlayer(Q1)), 100)
print("Actor-Critic vs Q-learning")
evaluate(env, (PolicyGradientPlayer(F3), TDPlayer(Q2)), 100)
print("Actor-Critic vs REINFORCE")
evaluate(env, (PolicyGradientPlayer(F3), PolicyGradientPlayer(F1)), 100)
print("Actor-Critic vs REINFORCE(with Baseline)")
evaluate(env, (PolicyGradientPlayer(F3), PolicyGradientPlayer(F2)), 100)
print("MCTSPlayer vs Sarsa")
evaluate(env, (MCTSPlayer(1000), TDPlayer(Q1)), 10)
print("MCTSPlayer vs Q-Learning")
evaluate(env, (MCTSPlayer(1000), TDPlayer(Q2)), 10)
print("MCTSPlayer vs REINFORCE")
evaluate(env, (MCTSPlayer(1000), PolicyGradientPlayer(F1)), 10)
print("MCTSPlayer vs REINFORCE(with Baseline)")
evaluate(env, (MCTSPlayer(1000), PolicyGradientPlayer(F2)), 10)
print("MCTSPlayer vs Actor-Critic")
evaluate(env, (MCTSPlayer(1000), PolicyGradientPlayer(F3)), 10)