-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathrefine-smpl.py
278 lines (232 loc) · 9.3 KB
/
refine-smpl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import numpy as np
import smplx
from tqdm import tqdm
import glob
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch3d.renderer import (
PerspectiveCameras,
MeshRenderer,
MeshRasterizer,
RasterizationSettings,
BlendParams,
SoftSilhouetteShader,
)
from pytorch3d.structures import Meshes
DEVICE = "cuda"
def optimize(optimizer, closure, max_iter=10):
pbar = tqdm(range(max_iter))
for i in pbar:
loss = optimizer.step(closure)
pbar.set_postfix_str(f"loss: {loss.detach().cpu().numpy():.6f}")
def project(projection_matrices, keypoints_3d):
p = torch.einsum("ij,mnj->mni", projection_matrices[:3, :3], keypoints_3d) + projection_matrices[:3, 3]
p = p[..., :2] / p[..., 2:3]
return p
def build_renderer(camera, IMG_SIZE):
K = camera["intrinsic"]
K = torch.from_numpy(K).float().to(DEVICE)
R = torch.eye(3, device=DEVICE)[None]
R[:, 0] *= -1
R[:, 1] *= -1
t = torch.zeros(1, 3, device=DEVICE)
cameras = PerspectiveCameras(
focal_length=K[None, [0, 1], [0, 1]],
principal_point=K[None, [0, 1], [2, 2]],
R=R,
T=t,
image_size=[IMG_SIZE],
in_ndc=False,
device=DEVICE,
)
blend_params = BlendParams(sigma=1e-4, gamma=1e-4)
raster_settings = RasterizationSettings(
image_size=IMG_SIZE,
blur_radius=np.log(1. / 1e-4 - 1.) * blend_params.sigma,
faces_per_pixel=100,
)
renderer = MeshRenderer(
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=raster_settings
),
shader=SoftSilhouetteShader(
blend_params=blend_params
)
)
return renderer
class BODY25JointMapper:
SMPL_TO_BODY25 = [
24, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5, 8, 1, 4, 7, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34
]
def __init__(self):
self.mapping = self.SMPL_TO_BODY25
def __call__(self, smpl_output, *args, **kwargs):
return smpl_output.joints[:, self.mapping]
HEATMAP_THRES = 0.30
PAF_THRES = 0.05
PAF_RATIO_THRES = 0.95
NUM_SAMPLE = 10
MIN_POSE_JOINT_COUNT = 4
MIN_POSE_LIMB_SCORE = 0.4
NUM_JOINTS = 25
BODY25_POSE_INDEX = [(0, 1), (14, 15), (22, 23), (16, 17), (18, 19), (24, 25),
(26, 27), (6, 7), (2, 3), (4, 5), (8, 9), (10, 11),
(12, 13), (30, 31), (32, 33), (36, 37), (34, 35),
(38, 39), (20, 21), (28, 29), (40, 41), (42, 43),
(44, 45), (46, 47), (48, 49), (50, 51)]
BODY25_PART_PAIRS = [(1, 8), (1, 2), (1, 5), (2, 3), (3, 4), (5, 6), (6, 7),
(8, 9), (9, 10), (10, 11), (8, 12), (12, 13), (13, 14),
(1, 0), (0, 15), (15, 17), (0, 16), (16, 18), (2, 17),
(5, 18), (14, 19), (19, 20), (14, 21), (11, 22), (22, 23),
(11, 24)]
joints_name = [
"Nose", # 0 => 24 (SMPL)
"Neck", # 1 => 12
"RShoulder", # 2 => 17
"RElbow", # 3 => 19
"RWrist", # 4 => 21
"LShoulder", # 5 => 16
"LElbow", # 6 => 18
"LWrist", # 7 => 20
"MidHip", # 8 => 0
"RHip", # 9 => 2
"RKnee", # 10 => 5
"RAnkle", # 11 => 8
"LHip", # 12 => 1
"LKnee", # 13 => 4
"LAnkle", # 14 => 7
"REye", # 15 => 25
"LEye", # 16 => 26
"REar", # 17 => 27
"LEar", # 18 => 28
"LBigToe", # 19 => 29
"LSmallToe", # 20 => 30
"LHeel", # 21 => 31
"RBigToe", # 22 => 32
"RSmallToe", # 23 => 33
"RHeel", # 24 => 34
]
SELECT_JOINTS = [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]
import cv2
def draw_detect(frame: np.ndarray, poses2d: np.ndarray, color=(255, 255, 0)):
for person in poses2d:
# draw parts
for (i, j) in BODY25_PART_PAIRS:
if person.shape[-1] > 2 and min(person[[i, j], 2]) < 1e-3:
continue
frame = cv2.line(frame, tuple(person[i, :2].astype(int)),
tuple(person[j, :2].astype(int)), (color), 1)
# draw joints
for joint in person:
if len(joint) > 2 and joint[-1] == 0:
continue
pos = joint[:2].astype(int)
frame = cv2.circle(frame, tuple(pos), 2, (color), 2, cv2.FILLED)
return frame
@torch.no_grad()
def main(root, gender, keypoints_threshold, use_silhouette, downscale=1):
camera = dict(np.load(f"{root}/cameras.npz"))
if downscale > 1:
camera["intrinsic"][:2] /= downscale
projection_matrices = camera["intrinsic"] @ camera["extrinsic"][:3]
projection_matrices = torch.from_numpy(projection_matrices).float().to(DEVICE)
# prepare data
joint_mapper = BODY25JointMapper()
smpl_params = dict(np.load(f"{root}/poses.npz"))
keypoints_2d = np.load(f"{root}/keypoints.npy")
keypoints_2d = torch.from_numpy(keypoints_2d).float().to(DEVICE)
params = {}
for k, v in smpl_params.items():
if k == "thetas":
tensor = torch.from_numpy(v[:, :3]).clone().to(DEVICE)
params["global_orient"] = nn.Parameter(tensor)
tensor = torch.from_numpy(v[:, 3:]).clone().to(DEVICE)
params["body_pose"] = nn.Parameter(tensor)
elif k == "betas":
tensor = torch.from_numpy(v).clone().to(DEVICE)
params[k] = nn.Parameter(tensor[None])
# params[k] = tensor[None]
else:
tensor = torch.from_numpy(v).clone().to(DEVICE)
params[k] = nn.Parameter(tensor)
body_model = smplx.SMPL("./data/SMPLX/smpl", gender=gender)
body_model.to(DEVICE)
# optimize with keypoints
optimizer = torch.optim.Adam(params.values(), lr=1e-3)
def closure():
optimizer.zero_grad()
smpl_output = body_model(**params)
keypoints_pred = project(projection_matrices, joint_mapper(smpl_output))
error = (keypoints_2d[..., :2] - keypoints_pred).square().sum(-1).sqrt()
m1 = (keypoints_2d[..., 2] > keypoints_threshold)
mask = m1
error = error * mask.float()
loss = error[:, SELECT_JOINTS]
loss = loss.mean()
reg = (smpl_output.vertices[1:] - smpl_output.vertices[:-1]).square().sum(-1).sqrt()
loss += reg.mean()
loss.backward()
return loss
optimize(optimizer, closure, max_iter=200)
if use_silhouette:
masks = sorted(glob.glob(f"{root}/masks/*"))
masks = [cv2.imread(p)[..., 0] for p in masks]
if downscale > 1:
masks = [cv2.resize(m, dsize=None, fx=1/downscale, fy=1/downscale) for m in masks]
masks = np.stack(masks, axis=0)
img_size = masks[0].shape[:2]
renderer = build_renderer(camera, img_size)
for i in range(len(masks)):
mask = torch.from_numpy(masks[i:i+1]).float().to(DEVICE) / 255
optimizer = torch.optim.LBFGS(params.values(), line_search_fn="strong_wolfe")
def closure():
optimizer.zero_grad()
# silhouette loss
smpl_output = body_model(
betas=params["betas"].clone().detach(),
global_orient=params["global_orient"][i:i+1],
body_pose=params["body_pose"][i:i+1],
transl=params["transl"][i:i+1],
)
# keypoints loss
keypoints_pred = project(projection_matrices, joint_mapper(smpl_output))
loss_keypoints = (keypoints_2d[i:i+1, :, :2] - keypoints_pred).square().sum(-1).sqrt()
m1 = (keypoints_2d[i:i+1, :, 2] > 0)
loss_keypoints = (loss_keypoints * m1.float()).mean()
meshes = Meshes(
verts=smpl_output.vertices,
faces=body_model.faces_tensor[None].repeat(1, 1, 1),
)
silhouette = renderer(meshes)[..., 3]
loss_silhouette = F.mse_loss(mask, silhouette)
loss = loss_silhouette # + loss_keypoints
loss.backward()
return loss
optimize(optimizer, closure, max_iter=10)
smpl_params = dict(smpl_params)
for k in smpl_params:
if k == "betas":
smpl_params[k] = params[k][0].detach().cpu().numpy()
elif k == "thetas":
smpl_params[k][:, :3] = params["global_orient"].detach().cpu().numpy()
smpl_params[k][:, 3:] = params["body_pose"].detach().cpu().numpy()
elif k == "body_pose":
smpl_params[k] = params[k].detach().cpu().numpy()
smpl_params[k][:, -12:] = 0
else:
smpl_params[k] = params[k].detach().cpu().numpy()
np.savez(f"{root}/poses_optimized.npz", **smpl_params)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, required=True)
parser.add_argument("--gender", type=str, default="male")
parser.add_argument("--keypoints-threshold", type=float, default=0.2)
parser.add_argument("--silhouette", action="store_true")
parser.add_argument("--downscale", type=float, default=1.0)
args = parser.parse_args()
main(args.data_dir, args.gender, args.keypoints_threshold, args.silhouette, args.downscale)