-
Notifications
You must be signed in to change notification settings - Fork 627
/
Copy pathloss.py
287 lines (243 loc) · 11 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
"""
This file contains specific functions for computing losses of FCOS
file
"""
import torch
from torch.nn import functional as F
from torch import nn
import os
from ..utils import concat_box_prediction_layers
from fcos_core.layers import IOULoss
from fcos_core.layers import SigmoidFocalLoss
from fcos_core.modeling.matcher import Matcher
from fcos_core.modeling.utils import cat
from fcos_core.structures.boxlist_ops import boxlist_iou
from fcos_core.structures.boxlist_ops import cat_boxlist
INF = 100000000
def get_num_gpus():
return int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
def reduce_sum(tensor):
if get_num_gpus() <= 1:
return tensor
import torch.distributed as dist
tensor = tensor.clone()
dist.all_reduce(tensor, op=dist.reduce_op.SUM)
return tensor
class FCOSLossComputation(object):
"""
This class computes the FCOS losses.
"""
def __init__(self, cfg):
self.cls_loss_func = SigmoidFocalLoss(
cfg.MODEL.FCOS.LOSS_GAMMA,
cfg.MODEL.FCOS.LOSS_ALPHA
)
self.fpn_strides = cfg.MODEL.FCOS.FPN_STRIDES
self.center_sampling_radius = cfg.MODEL.FCOS.CENTER_SAMPLING_RADIUS
self.iou_loss_type = cfg.MODEL.FCOS.IOU_LOSS_TYPE
self.norm_reg_targets = cfg.MODEL.FCOS.NORM_REG_TARGETS
# we make use of IOU Loss for bounding boxes regression,
# but we found that L1 in log scale can yield a similar performance
self.box_reg_loss_func = IOULoss(self.iou_loss_type)
self.centerness_loss_func = nn.BCEWithLogitsLoss(reduction="sum")
def get_sample_region(self, gt, strides, num_points_per, gt_xs, gt_ys, radius=1.0):
'''
This code is from
https://github.com/yqyao/FCOS_PLUS/blob/0d20ba34ccc316650d8c30febb2eb40cb6eaae37/
maskrcnn_benchmark/modeling/rpn/fcos/loss.py#L42
'''
num_gts = gt.shape[0]
K = len(gt_xs)
gt = gt[None].expand(K, num_gts, 4)
center_x = (gt[..., 0] + gt[..., 2]) / 2
center_y = (gt[..., 1] + gt[..., 3]) / 2
center_gt = gt.new_zeros(gt.shape)
# no gt
if center_x[..., 0].sum() == 0:
return gt_xs.new_zeros(gt_xs.shape, dtype=torch.uint8)
beg = 0
for level, n_p in enumerate(num_points_per):
end = beg + n_p
stride = strides[level] * radius
xmin = center_x[beg:end] - stride
ymin = center_y[beg:end] - stride
xmax = center_x[beg:end] + stride
ymax = center_y[beg:end] + stride
# limit sample region in gt
center_gt[beg:end, :, 0] = torch.where(
xmin > gt[beg:end, :, 0], xmin, gt[beg:end, :, 0]
)
center_gt[beg:end, :, 1] = torch.where(
ymin > gt[beg:end, :, 1], ymin, gt[beg:end, :, 1]
)
center_gt[beg:end, :, 2] = torch.where(
xmax > gt[beg:end, :, 2],
gt[beg:end, :, 2], xmax
)
center_gt[beg:end, :, 3] = torch.where(
ymax > gt[beg:end, :, 3],
gt[beg:end, :, 3], ymax
)
beg = end
left = gt_xs[:, None] - center_gt[..., 0]
right = center_gt[..., 2] - gt_xs[:, None]
top = gt_ys[:, None] - center_gt[..., 1]
bottom = center_gt[..., 3] - gt_ys[:, None]
center_bbox = torch.stack((left, top, right, bottom), -1)
inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0
return inside_gt_bbox_mask
def prepare_targets(self, points, targets):
object_sizes_of_interest = [
[-1, 64],
[64, 128],
[128, 256],
[256, 512],
[512, INF],
]
expanded_object_sizes_of_interest = []
for l, points_per_level in enumerate(points):
object_sizes_of_interest_per_level = \
points_per_level.new_tensor(object_sizes_of_interest[l])
expanded_object_sizes_of_interest.append(
object_sizes_of_interest_per_level[None].expand(len(points_per_level), -1)
)
expanded_object_sizes_of_interest = torch.cat(expanded_object_sizes_of_interest, dim=0)
num_points_per_level = [len(points_per_level) for points_per_level in points]
self.num_points_per_level = num_points_per_level
points_all_level = torch.cat(points, dim=0)
labels, reg_targets = self.compute_targets_for_locations(
points_all_level, targets, expanded_object_sizes_of_interest
)
for i in range(len(labels)):
labels[i] = torch.split(labels[i], num_points_per_level, dim=0)
reg_targets[i] = torch.split(reg_targets[i], num_points_per_level, dim=0)
labels_level_first = []
reg_targets_level_first = []
for level in range(len(points)):
labels_level_first.append(
torch.cat([labels_per_im[level] for labels_per_im in labels], dim=0)
)
reg_targets_per_level = torch.cat([
reg_targets_per_im[level]
for reg_targets_per_im in reg_targets
], dim=0)
if self.norm_reg_targets:
reg_targets_per_level = reg_targets_per_level / self.fpn_strides[level]
reg_targets_level_first.append(reg_targets_per_level)
return labels_level_first, reg_targets_level_first
def compute_targets_for_locations(self, locations, targets, object_sizes_of_interest):
labels = []
reg_targets = []
xs, ys = locations[:, 0], locations[:, 1]
for im_i in range(len(targets)):
targets_per_im = targets[im_i]
assert targets_per_im.mode == "xyxy"
bboxes = targets_per_im.bbox
labels_per_im = targets_per_im.get_field("labels")
area = targets_per_im.area()
l = xs[:, None] - bboxes[:, 0][None]
t = ys[:, None] - bboxes[:, 1][None]
r = bboxes[:, 2][None] - xs[:, None]
b = bboxes[:, 3][None] - ys[:, None]
reg_targets_per_im = torch.stack([l, t, r, b], dim=2)
if self.center_sampling_radius > 0:
is_in_boxes = self.get_sample_region(
bboxes,
self.fpn_strides,
self.num_points_per_level,
xs, ys,
radius=self.center_sampling_radius
)
else:
# no center sampling, it will use all the locations within a ground-truth box
is_in_boxes = reg_targets_per_im.min(dim=2)[0] > 0
max_reg_targets_per_im = reg_targets_per_im.max(dim=2)[0]
# limit the regression range for each location
is_cared_in_the_level = \
(max_reg_targets_per_im >= object_sizes_of_interest[:, [0]]) & \
(max_reg_targets_per_im <= object_sizes_of_interest[:, [1]])
locations_to_gt_area = area[None].repeat(len(locations), 1)
locations_to_gt_area[is_in_boxes == 0] = INF
locations_to_gt_area[is_cared_in_the_level == 0] = INF
# if there are still more than one objects for a location,
# we choose the one with minimal area
locations_to_min_area, locations_to_gt_inds = locations_to_gt_area.min(dim=1)
reg_targets_per_im = reg_targets_per_im[range(len(locations)), locations_to_gt_inds]
labels_per_im = labels_per_im[locations_to_gt_inds]
labels_per_im[locations_to_min_area == INF] = 0
labels.append(labels_per_im)
reg_targets.append(reg_targets_per_im)
return labels, reg_targets
def compute_centerness_targets(self, reg_targets):
left_right = reg_targets[:, [0, 2]]
top_bottom = reg_targets[:, [1, 3]]
centerness = (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * \
(top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])
return torch.sqrt(centerness)
def __call__(self, locations, box_cls, box_regression, centerness, targets):
"""
Arguments:
locations (list[BoxList])
box_cls (list[Tensor])
box_regression (list[Tensor])
centerness (list[Tensor])
targets (list[BoxList])
Returns:
cls_loss (Tensor)
reg_loss (Tensor)
centerness_loss (Tensor)
"""
N = box_cls[0].size(0)
num_classes = box_cls[0].size(1)
labels, reg_targets = self.prepare_targets(locations, targets)
box_cls_flatten = []
box_regression_flatten = []
centerness_flatten = []
labels_flatten = []
reg_targets_flatten = []
for l in range(len(labels)):
box_cls_flatten.append(box_cls[l].permute(0, 2, 3, 1).reshape(-1, num_classes))
box_regression_flatten.append(box_regression[l].permute(0, 2, 3, 1).reshape(-1, 4))
labels_flatten.append(labels[l].reshape(-1))
reg_targets_flatten.append(reg_targets[l].reshape(-1, 4))
centerness_flatten.append(centerness[l].reshape(-1))
box_cls_flatten = torch.cat(box_cls_flatten, dim=0)
box_regression_flatten = torch.cat(box_regression_flatten, dim=0)
centerness_flatten = torch.cat(centerness_flatten, dim=0)
labels_flatten = torch.cat(labels_flatten, dim=0)
reg_targets_flatten = torch.cat(reg_targets_flatten, dim=0)
pos_inds = torch.nonzero(labels_flatten > 0).squeeze(1)
box_regression_flatten = box_regression_flatten[pos_inds]
reg_targets_flatten = reg_targets_flatten[pos_inds]
centerness_flatten = centerness_flatten[pos_inds]
num_gpus = get_num_gpus()
# sync num_pos from all gpus
total_num_pos = reduce_sum(pos_inds.new_tensor([pos_inds.numel()])).item()
num_pos_avg_per_gpu = max(total_num_pos / float(num_gpus), 1.0)
cls_loss = self.cls_loss_func(
box_cls_flatten,
labels_flatten.int()
) / num_pos_avg_per_gpu
if pos_inds.numel() > 0:
centerness_targets = self.compute_centerness_targets(reg_targets_flatten)
# average sum_centerness_targets from all gpus,
# which is used to normalize centerness-weighed reg loss
sum_centerness_targets_avg_per_gpu = \
reduce_sum(centerness_targets.sum()).item() / float(num_gpus)
reg_loss = self.box_reg_loss_func(
box_regression_flatten,
reg_targets_flatten,
centerness_targets
) / sum_centerness_targets_avg_per_gpu
centerness_loss = self.centerness_loss_func(
centerness_flatten,
centerness_targets
) / num_pos_avg_per_gpu
else:
reg_loss = box_regression_flatten.sum()
reduce_sum(centerness_flatten.new_tensor([0.0]))
centerness_loss = centerness_flatten.sum()
return cls_loss, reg_loss, centerness_loss
def make_fcos_loss_evaluator(cfg):
loss_evaluator = FCOSLossComputation(cfg)
return loss_evaluator