-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Reformer.py
132 lines (111 loc) · 4.97 KB
/
Reformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import torch.nn as nn
import torch.nn.functional as F
from layers.Transformer_EncDec import Encoder, EncoderLayer
from layers.SelfAttention_Family import ReformerLayer
from layers.Embed import DataEmbedding
class Model(nn.Module):
"""
Reformer with O(LlogL) complexity
Paper link: https://openreview.net/forum?id=rkgNKkHtvB
"""
def __init__(self, configs, bucket_size=4, n_hashes=4):
"""
bucket_size: int,
n_hashes: int,
"""
super(Model, self).__init__()
self.task_name = configs.task_name
self.pred_len = configs.pred_len
self.seq_len = configs.seq_len
self.enc_embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq,
configs.dropout)
# Encoder
self.encoder = Encoder(
[
EncoderLayer(
ReformerLayer(None, configs.d_model, configs.n_heads,
bucket_size=bucket_size, n_hashes=n_hashes),
configs.d_model,
configs.d_ff,
dropout=configs.dropout,
activation=configs.activation
) for l in range(configs.e_layers)
],
norm_layer=torch.nn.LayerNorm(configs.d_model)
)
if self.task_name == 'classification':
self.act = F.gelu
self.dropout = nn.Dropout(configs.dropout)
self.projection = nn.Linear(
configs.d_model * configs.seq_len, configs.num_class)
else:
self.projection = nn.Linear(
configs.d_model, configs.c_out, bias=True)
def long_forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
# add placeholder
x_enc = torch.cat([x_enc, x_dec[:, -self.pred_len:, :]], dim=1)
if x_mark_enc is not None:
x_mark_enc = torch.cat(
[x_mark_enc, x_mark_dec[:, -self.pred_len:, :]], dim=1)
enc_out = self.enc_embedding(x_enc, x_mark_enc) # [B,T,C]
enc_out, attns = self.encoder(enc_out, attn_mask=None)
dec_out = self.projection(enc_out)
return dec_out # [B, L, D]
def short_forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
# Normalization
mean_enc = x_enc.mean(1, keepdim=True).detach() # B x 1 x E
x_enc = x_enc - mean_enc
std_enc = torch.sqrt(torch.var(x_enc, dim=1, keepdim=True, unbiased=False) + 1e-5).detach() # B x 1 x E
x_enc = x_enc / std_enc
# add placeholder
x_enc = torch.cat([x_enc, x_dec[:, -self.pred_len:, :]], dim=1)
if x_mark_enc is not None:
x_mark_enc = torch.cat(
[x_mark_enc, x_mark_dec[:, -self.pred_len:, :]], dim=1)
enc_out = self.enc_embedding(x_enc, x_mark_enc) # [B,T,C]
enc_out, attns = self.encoder(enc_out, attn_mask=None)
dec_out = self.projection(enc_out)
dec_out = dec_out * std_enc + mean_enc
return dec_out # [B, L, D]
def imputation(self, x_enc, x_mark_enc):
enc_out = self.enc_embedding(x_enc, x_mark_enc) # [B,T,C]
enc_out, attns = self.encoder(enc_out)
enc_out = self.projection(enc_out)
return enc_out # [B, L, D]
def anomaly_detection(self, x_enc):
enc_out = self.enc_embedding(x_enc, None) # [B,T,C]
enc_out, attns = self.encoder(enc_out)
enc_out = self.projection(enc_out)
return enc_out # [B, L, D]
def classification(self, x_enc, x_mark_enc):
# enc
enc_out = self.enc_embedding(x_enc, None)
enc_out, attns = self.encoder(enc_out)
# Output
# the output transformer encoder/decoder embeddings don't include non-linearity
output = self.act(enc_out)
output = self.dropout(output)
# zero-out padding embeddings
output = output * x_mark_enc.unsqueeze(-1)
# (batch_size, seq_length * d_model)
output = output.reshape(output.shape[0], -1)
output = self.projection(output) # (batch_size, num_classes)
return output
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
if self.task_name == 'long_term_forecast':
dec_out = self.long_forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
return dec_out[:, -self.pred_len:, :] # [B, L, D]
if self.task_name == 'short_term_forecast':
dec_out = self.short_forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
return dec_out[:, -self.pred_len:, :] # [B, L, D]
if self.task_name == 'imputation':
dec_out = self.imputation(x_enc, x_mark_enc)
return dec_out # [B, L, D]
if self.task_name == 'anomaly_detection':
dec_out = self.anomaly_detection(x_enc)
return dec_out # [B, L, D]
if self.task_name == 'classification':
dec_out = self.classification(x_enc, x_mark_enc)
return dec_out # [B, N]
return None