Skip to content

Latest commit

 

History

History
 
 

MASS-summarization

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

MASS-SUM

Dependency

pip install torch==1.0.0 
pip install fairseq==0.8.0

MODEL

MASS uses default Transformer structure. We denote L, H, A as the number of layers, the hidden size and the number of attention heads.

Model Encoder Decoder Download
MASS-base-uncased 6L-768H-12A 6L-768H-12A MODEL
MASS-middle-uncased 6L-1024H-16A 6L-1024H-16A MODEL

Results on Abstractive Summarization (9/27/2019)

Dataset Params RG-1 RG-2 RG-L FT model
CNN/Daily Mail 123M 42.12 19.50 39.01 MODEL
Gigaword 123M 38.73 19.71 35.96 MODEL
XSum 123M 39.75 17.24 31.95
CNN/Daily Mail 208M 42.90 19.87 39.80
Gigaword 208M 38.93 20.20 36.20

Evaluated by files2rouge. FT model means Fine-tuned model.

Pipeline for Pre-Training

Download data

Our model is trained on Wikipekia + BookCorpus. Here we use wikitext-103 to demonstrate how to process data.

wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip
unzip wikitext-103-raw-v1.zip

Tokenize corpus

We use wordpiece vocabuary (from bert) to tokenize the original text data directly. We provide a script to deal with data. You need to pip install pytorch_transformers first to generate tokenized data.

mkdir -p mono
for SPLIT in train valid test; do 
    python encode.py \
        --inputs wikitext-103-raw/wiki.${SPLIT}.raw \
        --outputs mono/${SPLIT}.txt \
        --workers 60; \
done 

Binarized data

wget -c https://modelrelease.blob.core.windows.net/mass/mass-base-uncased.tar.gz
tar -zxvf mass-base-uncased.tar.gz
# Move dict.txt from tar file to the data directory 

fairseq-preprocess \
    --user-dir mass --only-source --task masked_s2s \
    --trainpref mono/train.txt --validpref mono/valid.txt --testpref mono/test.txt \
    --destdir processed --srcdict dict.txt --workers 60

Pre-training

TOKENS_PER_SAMPLE=512
WARMUP_UPDATES=10000
PEAK_LR=0.0005
TOTAL_UPDATES=125000
MAX_SENTENCES=8
UPDATE_FREQ=16

fairseq-train processed \
    --user-dir mass --task masked_s2s --arch transformer_mass_base \
    --sample-break-mode none \
    --tokens-per-sample $TOKENS_PER_SAMPLE \
    --criterion masked_lm \
    --optimizer adam --adam-betas '(0.9, 0.98)' --adam-eps 1e-6 --clip-norm 0.0 \
    --lr-scheduler polynomial_decay --lr $PEAK_LR --warmup-updates $WARMUP_UPDATES --total-num-update $TOTAL_UPDATES \
    --dropout 0.1 --attention-dropout 0.1 --weight-decay 0.01 \
    --max-sentences $MAX_SENTENCES --update-freq $UPDATE_FREQ \
    --ddp-backend=no_c10d \

Pipeline for Fine-tuning (CNN / Daily Mail)

Data

Download, tokenize and truncate data from this link, and use the above tokenization to generate wordpiece-level data. Rename the suffix article and title as src and tgt. Assume the tokenized data is under cnndm/para

fairseq-preprocess \
    --user-dir mass --task masked_s2s \
    --source-lang src --target-lang tgt \
    --trainpref cnndm/para/train --validpref cnndm/para/valid --testpref cnndm/para/test \
    --destdir cnndm/processed --srcdict dict.txt --tgtdict dict.txt \
    --workers 20

dict.txt is included in mass-base-uncased.tar.gz. A copy of binarized data can be obtained from here.

Running

fairseq-train cnndm/processed/ \
    --user-dir mass --task translation_mass --arch transformer_mass_base \
    --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
    --lr 0.0005 --min-lr 1e-09 \
    --lr-scheduler inverse_sqrt --warmup-init-lr 1e-07 --warmup-updates 4000 \
    --weight-decay 0.0 \
    --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \
    --update-freq 8 --max-tokens 4096 \
    --ddp-backend=no_c10d --max-epoch 25 \
    --max-source-positions 512 --max-target-positions 512 \
    --skip-invalid-size-inputs-valid-test \
    --load-from-pretrained-model mass-base-uncased.pt \

lr=0.0005 is not the optimal choice for any task. It is tuned on the dev set (among 1e-4, 2e-4, 5e-4).

Inference

MODEL=checkpoints/checkpoint_best.pt
fairseq-generate $DATADIR --path $MODEL \
    --user-dir mass --task translation_mass \
    --batch-size 64 --beam 5 --min-len 50 --no-repeat-ngram-size 3 \
    --lenpen 1.0 \

min-len is sensitive for different tasks, lenpen needs to be tuned on the dev set. Restore the results to the word-level data by using sed 's/ ##//g'.

Other questions

  1. Q: I have met error like ModuleNotFouldError: No module named 'mass' in multi-GPUs or multi-nodes, how to solve it?
    A: It seems like a bug in python multiprocessing/spawn.py. A direct solution is to move these three files to its corresponding folder in the fairseq. For example:
  mv bert_dictionary.py fairseq/fairseq/data/
  mv masked_dataset.py fairseq/fairseq/data/
  mv learned_positional_embedding.py fairseq/fairseq/modules/
  modify fairseq/fairseq/data/__init__.py to import the above files.