forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
symbol_inception-bn.R
134 lines (124 loc) · 6.67 KB
/
symbol_inception-bn.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
library(mxnet)
eps = 1e-10 + 1e-5
bn_mom = 0.9
fix_gamma = FALSE
ConvFactory <- function(data, num_filter, kernel, stride = c(1, 1),
pad = c(0, 0), name = '', suffix = '') {
conv <- mx.symbol.Convolution(data = data, num_filter = num_filter,
kernel = kernel, stride = stride, pad = pad,
name = paste('conv_', name, suffix, sep = ''))
bn <- mx.symbol.BatchNorm(data = conv, eps = eps, momentum = bn_mom, fix.gamma = fix_gamma, name = paste('bn_', name, suffix, sep = ''))
act <- mx.symbol.Activation(data = bn, act_type = 'relu', name = paste('relu_', name, suffix, sep = ''))
return(act)
}
InceptionFactoryA <- function(data, num_1x1, num_3x3red, num_3x3, num_d3x3red,
num_d3x3, pool, proj, name) {
# 1x1
c1x1 <- ConvFactory(data = data, num_filter = num_1x1, kernel = c(1, 1), name = paste(name, '_1x1', sep = '')
)
# 3x3 reduce + 3x3
c3x3r <- ConvFactory(data = data, num_filter = num_3x3red, kernel = c(1, 1),
name = paste(name, '_3x3', sep = ''), suffix = '_reduce')
c3x3 <- ConvFactory(data = c3x3r, num_filter = num_3x3, kernel = c(3, 3),
pad = c(1, 1), name = paste(name, '_3x3', sep = ''))
# double 3x3 reduce + double 3x3
cd3x3r <- ConvFactory(data = data, num_filter = num_d3x3red, kernel = c(1, 1),
name = paste(name, '_double_3x3', sep = ''), suffix = '_reduce')
cd3x3 <- ConvFactory(data = cd3x3r, num_filter = num_d3x3, kernel = c(3, 3),
pad = c(1, 1), name = paste(name, '_double_3x3_0', sep = ''))
cd3x3 <- ConvFactory(data = cd3x3, num_filter = num_d3x3, kernel = c(3, 3),
pad = c(1, 1), name = paste(name, '_double_3x3_1', sep = ''))
# pool + proj
pooling <- mx.symbol.Pooling(data = data, kernel = c(3, 3), stride = c(1, 1),
pad = c(1, 1), pool_type = pool,
name = paste(pool, '_pool_', name, '_pool', sep = ''))
cproj <- ConvFactory(data = pooling, num_filter = proj, kernel = c(1, 1),
name = paste(name, '_proj', sep = ''))
# concat
concat_lst <- list()
concat_lst <- c(c1x1, c3x3, cd3x3, cproj)
concat_lst$num.args = 4
concat_lst$name = paste('ch_concat_', name, '_chconcat', sep = '')
concat = mxnet:::mx.varg.symbol.Concat(concat_lst)
return(concat)
}
InceptionFactoryB <- function(data, num_3x3red, num_3x3, num_d3x3red, num_d3x3, name) {
# 3x3 reduce + 3x3
c3x3r <- ConvFactory(data = data, num_filter = num_3x3red, kernel = c(1, 1),
name = paste(name, '_3x3', sep = ''), suffix = '_reduce')
c3x3 <- ConvFactory(data = c3x3r, num_filter = num_3x3, kernel = c(3, 3),
pad = c(1, 1), stride = c(2, 2), name = paste(name, '_3x3', sep = ''))
# double 3x3 reduce + double 3x3
cd3x3r <- ConvFactory(data = data, num_filter = num_d3x3red, kernel = c(1, 1),
name = paste(name, '_double_3x3', sep = ''), suffix = '_reduce')
cd3x3 <- ConvFactory(data = cd3x3r, num_filter = num_d3x3, kernel = c(3, 3),
pad = c(1, 1), stride = c(1, 1), name = paste(name, '_double_3x3_0', sep = ''))
cd3x3 = ConvFactory(data = cd3x3, num_filter = num_d3x3, kernel = c(3, 3),
pad = c(1, 1), stride = c(2, 2), name = paste(name, '_double_3x3_1', sep = ''))
# pool + proj
pooling = mx.symbol.Pooling(data = data, kernel = c(3, 3), stride = c(2, 2),
pad = c(1, 1), pool_type = "max",
name = paste('max_pool_', name, '_pool', sep = ''))
# concat
concat_lst <- list()
concat_lst <- c(c3x3, cd3x3, pooling)
concat_lst$num.args = 3
concat_lst$name = paste('ch_concat_', name, '_chconcat', sep = '')
concat = mxnet:::mx.varg.symbol.Concat(concat_lst)
return(concat)
}
get_symbol <- function(num_classes = 1000) {
# data
data = mx.symbol.Variable(name = "data")
# stage 1
conv1 = ConvFactory(data = data, num_filter = 64, kernel = c(7, 7),
stride = c(2, 2), pad = c(3, 3), name = '1')
pool1 = mx.symbol.Pooling(data = conv1, kernel = c(3, 3), stride = c(2, 2),
name = 'pool_1', pool_type = 'max')
# stage 2
conv2red = ConvFactory(data = pool1, num_filter = 64, kernel = c(1, 1),
stride = c(1, 1), name = '2_red')
conv2 = ConvFactory(data = conv2red, num_filter = 192, kernel = c(3, 3),
stride = c(1, 1), pad = c(1, 1), name = '2')
pool2 = mx.symbol.Pooling(data = conv2, kernel = c(3, 3), stride = c(2, 2),
name = 'pool_2', pool_type = 'max')
# stage 2
in3a = InceptionFactoryA(pool2, 64, 64, 64, 64, 96, "avg", 32, '3a')
in3b = InceptionFactoryA(in3a, 64, 64, 96, 64, 96, "avg", 64, '3b')
in3c = InceptionFactoryB(in3b, 128, 160, 64, 96, '3c')
# stage 3
in4a = InceptionFactoryA(in3c, 224, 64, 96, 96, 128, "avg", 128, '4a')
in4b = InceptionFactoryA(in4a, 192, 96, 128, 96, 128, "avg", 128, '4b')
in4c = InceptionFactoryA(in4b, 160, 128, 160, 128, 160, "avg", 128, '4c')
in4d = InceptionFactoryA(in4c, 96, 128, 192, 160, 192, "avg", 128, '4d')
in4e = InceptionFactoryB(in4d, 128, 192, 192, 256, '4e')
# stage 4
in5a = InceptionFactoryA(in4e, 352, 192, 320, 160, 224, "avg", 128, '5a')
in5b = InceptionFactoryA(in5a, 352, 192, 320, 192, 224, "max", 128, '5b')
# global avg pooling
avg = mx.symbol.Pooling(data = in5b, kernel = c(7, 7), stride = c(1, 1),
name = "global_pool", pool_type = 'avg')
# linear classifier
flatten = mx.symbol.Flatten(data = avg, name = 'flatten')
fc1 = mx.symbol.FullyConnected(data = flatten,
num_hidden = num_classes,
name = 'fc1')
softmax = mx.symbol.SoftmaxOutput(data = fc1, name = 'softmax')
return(softmax)
}