diff --git a/setup.py b/setup.py index 5c23fb9..3a58a77 100644 --- a/setup.py +++ b/setup.py @@ -10,7 +10,7 @@ subprocess.check_call(['pip', 'install', 'Cython']) -__version__ = "0.1.1" +__version__ = "0.1.2" here = path.abspath(path.dirname(__file__)) diff --git a/unifiedbooster/gbdt_classification.py b/unifiedbooster/gbdt_classification.py index 41befe5..e8dd850 100644 --- a/unifiedbooster/gbdt_classification.py +++ b/unifiedbooster/gbdt_classification.py @@ -24,7 +24,7 @@ def __init__(self, model_type='xgboost', # subsample # max_depth # lightgbm ----- - # num_iterations + # n_estimators # learning_rate # bagging_fraction # max_depth @@ -45,7 +45,7 @@ def __init__(self, model_type='xgboost', elif self.model_type == "lightgbm": verbose = self.verbosity - 1 if self.verbosity==0 else self.verbosity self.params = { - 'num_iterations': self.n_estimators, + 'n_estimators': self.n_estimators, 'learning_rate': self.learning_rate, 'bagging_fraction': self.subsample, 'max_depth': self.max_depth, @@ -65,7 +65,7 @@ def __init__(self, model_type='xgboost', if model_type == 'xgboost': self.model = XGBClassifier(**self.params) elif model_type == 'catboost': - self.model = CatBoostClassifier(**self.params, logging_level='Silent') + self.model = CatBoostClassifier(**self.params) elif model_type == 'lightgbm': self.model = LGBMClassifier(**self.params) else: diff --git a/unifiedbooster/gbdt_regression.py b/unifiedbooster/gbdt_regression.py index c450703..7260b76 100644 --- a/unifiedbooster/gbdt_regression.py +++ b/unifiedbooster/gbdt_regression.py @@ -24,7 +24,7 @@ def __init__(self, model_type='xgboost', # subsample # max_depth # lightgbm ----- - # num_iterations + # n_estimators # learning_rate # bagging_fraction # max_depth @@ -45,7 +45,7 @@ def __init__(self, model_type='xgboost', elif self.model_type == "lightgbm": verbose = self.verbosity - 1 if self.verbosity==0 else self.verbosity self.params = { - 'num_iterations': self.n_estimators, + 'n_estimators': self.n_estimators, 'learning_rate': self.learning_rate, 'bagging_fraction': self.subsample, 'max_depth': self.max_depth, @@ -65,7 +65,7 @@ def __init__(self, model_type='xgboost', if model_type == 'xgboost': self.model = XGBRegressor(**self.params) elif model_type == 'catboost': - self.model = CatBoostRegressor(**self.params, logging_level='Silent') + self.model = CatBoostRegressor(**self.params) elif model_type == 'lightgbm': self.model = LGBMRegressor(**self.params) else: