-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest_temporal_problem.py
463 lines (389 loc) · 19.2 KB
/
test_temporal_problem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
from typing import Any, List, Mapping, Optional
import pytest
import jax.numpy as jnp
import numpy as np
import pandas as pd
from ott.geometry import costs, epsilon_scheduler
from scipy.sparse import csr_matrix
import scanpy as sc
from anndata import AnnData
from moscot.backends.ott.output import GraphOTTOutput
from moscot.base.output import BaseSolverOutput
from moscot.base.problems import BirthDeathProblem
from moscot.problems.time import TemporalProblem
from moscot.utils.tagged_array import Tag, TaggedArray
from tests._utils import ATOL, RTOL
from tests.problems.conftest import (
geometry_args,
lin_prob_args,
lr_pointcloud_args,
lr_sinkhorn_solver_args,
pointcloud_args,
sinkhorn_args_1,
sinkhorn_args_2,
sinkhorn_solver_args,
)
class TestTemporalProblem:
@pytest.mark.fast()
def test_prepare(self, adata_time: AnnData):
expected_keys = [(0, 1), (1, 2)]
problem = TemporalProblem(adata=adata_time)
assert len(problem) == 0
assert problem.problems == {}
assert problem.solutions == {}
problem = problem.prepare(
time_key="time",
policy="sequential",
)
assert isinstance(problem.problems, dict)
assert len(problem.problems) == len(expected_keys)
for key in problem:
assert key in expected_keys
assert isinstance(problem[key], BirthDeathProblem)
@pytest.mark.parametrize("callback", ["local-pca", None])
def test_solve_balanced(self, adata_time: AnnData, callback: Optional[str]):
eps = 0.5
joint_attr = None if callback else "X_pca"
expected_keys = [(0, 1), (1, 2)]
problem = TemporalProblem(adata=adata_time)
problem = problem.prepare("time", cost="cosine", xy_callback=callback, joint_attr=joint_attr)
problem = problem.solve(epsilon=eps)
assert isinstance(problem[0, 1].xy.cost, costs.Cosine)
for key, subsol in problem.solutions.items():
assert isinstance(subsol, BaseSolverOutput)
assert key in expected_keys
def test_solve_unbalanced(self, adata_time: AnnData):
taus = [9e-1, 1e-2]
problem1 = TemporalProblem(adata=adata_time)
problem2 = TemporalProblem(adata=adata_time)
problem1 = problem1.prepare("time", a="left_marginals_unbalanced", b="right_marginals_unbalanced")
problem2 = problem2.prepare("time", a="left_marginals_unbalanced", b="right_marginals_unbalanced")
assert problem1[0, 1].a is not None
assert problem1[0, 1].b is not None
assert problem2[0, 1].a is not None
assert problem2[0, 1].b is not None
problem1 = problem1.solve(epsilon=1, tau_a=taus[0], tau_b=taus[0], max_iterations=10000)
problem2 = problem2.solve(epsilon=1, tau_a=taus[1], tau_b=taus[1], max_iterations=10000)
assert problem1[0, 1].solution.a is not None
assert problem1[0, 1].solution.b is not None
assert problem2[0, 1].solution.a is not None
assert problem2[0, 1].solution.b is not None
div1 = np.linalg.norm(problem1[0, 1].a - problem1[0, 1].solution.a)
div2 = np.linalg.norm(problem1[0, 1].b - problem1[0, 1].solution.b)
assert div1 < div2
@pytest.mark.fast()
@pytest.mark.parametrize(
"gene_set_list",
[
[None, None],
["human", "human"],
["mouse", "mouse"],
[["ANLN", "ANP32E", "ATAD2"], ["ADD1", "AIFM3", "ANKH"]],
],
)
def test_score_genes(self, adata_time: AnnData, gene_set_list: List[List[str]]):
gene_set_proliferation = gene_set_list[0]
gene_set_apoptosis = gene_set_list[1]
problem = TemporalProblem(adata_time)
problem.score_genes_for_marginals(
gene_set_proliferation=gene_set_proliferation, gene_set_apoptosis=gene_set_apoptosis
)
if gene_set_apoptosis is not None:
assert problem.proliferation_key == "proliferation"
assert adata_time.obs["proliferation"] is not None
assert np.sum(np.isnan(adata_time.obs["proliferation"])) == 0
else:
assert problem.proliferation_key is None
if gene_set_apoptosis is not None:
assert problem.apoptosis_key == "apoptosis"
assert adata_time.obs["apoptosis"] is not None
assert np.sum(np.isnan(adata_time.obs["apoptosis"])) == 0
else:
assert problem.apoptosis_key is None
@pytest.mark.fast()
def test_proliferation_key_pipeline(self, adata_time: AnnData):
problem = TemporalProblem(adata_time)
assert problem.proliferation_key is None
problem.score_genes_for_marginals(gene_set_proliferation="human", gene_set_apoptosis="human")
assert problem.proliferation_key == "proliferation"
adata_time.obs["new_proliferation"] = np.ones(adata_time.n_obs)
problem.proliferation_key = "new_proliferation"
assert problem.proliferation_key == "new_proliferation"
@pytest.mark.fast()
def test_apoptosis_key_pipeline(self, adata_time: AnnData):
problem = TemporalProblem(adata_time)
assert problem.apoptosis_key is None
problem.score_genes_for_marginals(gene_set_proliferation="human", gene_set_apoptosis="human")
assert problem.apoptosis_key == "apoptosis"
adata_time.obs["new_apoptosis"] = np.ones(adata_time.n_obs)
problem.apoptosis_key = "new_apoptosis"
assert problem.apoptosis_key == "new_apoptosis"
@pytest.mark.fast()
@pytest.mark.parametrize("scaling", [0.1, 1, 4])
def test_proliferation_key_c_pipeline(self, adata_time: AnnData, scaling: float):
key0, key1, *_ = np.sort(np.unique(adata_time.obs["time"].values))
adata_time = adata_time[adata_time.obs["time"].isin([key0, key1])].copy()
delta = key1 - key0
problem = TemporalProblem(adata_time)
assert problem.proliferation_key is None
problem.score_genes_for_marginals(gene_set_proliferation="human", gene_set_apoptosis="human")
assert problem.proliferation_key == "proliferation"
problem = problem.prepare(time_key="time", marginal_kwargs={"scaling": scaling})
prolif = adata_time[adata_time.obs["time"] == key0].obs["proliferation"]
apopt = adata_time[adata_time.obs["time"] == key0].obs["apoptosis"]
expected_marginals = np.exp((prolif - apopt) * delta / scaling)
np.testing.assert_allclose(problem[key0, key1]._prior_growth, expected_marginals, rtol=RTOL, atol=ATOL)
def test_cell_costs_source_pipeline(self, adata_time: AnnData):
problem = TemporalProblem(adata=adata_time).prepare("time")
problem = problem.solve(max_iterations=2)
cell_costs_source = problem.cell_costs_source
assert isinstance(cell_costs_source, pd.DataFrame)
assert len(cell_costs_source.columns) == 1
assert list(cell_costs_source.columns)[0] == "cell_cost_source"
assert set(cell_costs_source.index) == set(adata_time.obs.index)
assert set(cell_costs_source[cell_costs_source["cell_cost_source"].isnull()].index) == set(
adata_time[adata_time.obs["time"] == 2].obs.index
)
assert set(cell_costs_source[~cell_costs_source["cell_cost_source"].isnull()].index) == set(
adata_time[adata_time.obs["time"].isin([0, 1])].obs.index
)
def test_cell_costs_target_pipeline(self, adata_time: AnnData):
problem = TemporalProblem(adata=adata_time)
problem = problem.prepare("time")
problem = problem.solve(max_iterations=2)
cell_costs_target = problem.cell_costs_target
assert isinstance(cell_costs_target, pd.DataFrame)
assert len(cell_costs_target.columns) == 1
assert list(cell_costs_target.columns)[0] == "cell_cost_target"
assert set(cell_costs_target.index) == set(adata_time.obs.index)
assert set(cell_costs_target[cell_costs_target["cell_cost_target"].isnull()].index) == set(
adata_time[adata_time.obs["time"] == 0].obs.index
)
assert set(cell_costs_target[~cell_costs_target["cell_cost_target"].isnull()].index) == set(
adata_time[adata_time.obs["time"].isin([1, 2])].obs.index
)
def test_growth_rates_pipeline(self, adata_time: AnnData):
problem = TemporalProblem(adata=adata_time)
problem = problem.score_genes_for_marginals(gene_set_proliferation="mouse", gene_set_apoptosis="mouse")
problem = problem.prepare("time", a=True, b=True)
problem = problem.solve(max_iterations=2)
growth_rates = problem.posterior_growth_rates
assert isinstance(growth_rates, pd.DataFrame)
assert len(growth_rates.columns) == 1
assert set(growth_rates.index) == set(adata_time.obs.index)
assert set(growth_rates[growth_rates["posterior_growth_rates"].isnull()].index) == set(
adata_time[adata_time.obs["time"] == 2].obs.index
)
assert set(growth_rates[~growth_rates["posterior_growth_rates"].isnull()].index) == set(
adata_time[adata_time.obs["time"].isin([0, 1])].obs.index
)
def test_result_compares_to_wot(self, gt_temporal_adata: AnnData):
# this test assures TemporalProblem returns an equivalent solution to Waddington OT (precomputed)
adata = gt_temporal_adata.copy()
config = gt_temporal_adata.uns
eps = config["eps"]
lam1 = config["lam1"]
lam2 = config["lam2"]
key = config["key"]
key_1 = config["key_1"]
key_2 = config["key_2"]
key_3 = config["key_3"]
tp = TemporalProblem(adata)
tp = tp.prepare(
key,
subset=[(key_1, key_2), (key_2, key_3), (key_1, key_3)],
policy="explicit",
xy_callback_kwargs={"n_comps": 50},
)
tp = tp.solve(epsilon=eps, scale_cost="mean", tau_a=lam1 / (lam1 + eps), tau_b=lam2 / (lam2 + eps))
np.testing.assert_array_almost_equal(
adata.uns["tmap_10_105"],
np.array(tp[key_1, key_2].solution.transport_matrix),
)
np.testing.assert_array_almost_equal(
adata.uns["tmap_105_11"],
np.array(tp[key_2, key_3].solution.transport_matrix),
)
np.testing.assert_array_almost_equal(
adata.uns["tmap_10_11"],
np.array(tp[key_1, key_3].solution.transport_matrix),
)
def test_geodesic_cost_set_xy_cost_dense(self, adata_time):
# TODO(@MUCDK) add test for failure case
tp = TemporalProblem(adata_time)
tp = tp.prepare("time", joint_attr="X_pca")
batch_column = "time"
unique_batches = adata_time.obs[batch_column].unique()
dfs = []
for i in range(len(unique_batches) - 1):
batch1 = unique_batches[i]
batch2 = unique_batches[i + 1]
indices = np.where((adata_time.obs[batch_column] == batch1) | (adata_time.obs[batch_column] == batch2))[0]
adata_subset = adata_time[indices]
sc.pp.neighbors(adata_subset, n_neighbors=15, use_rep="X_pca")
dfs.append(
pd.DataFrame(
index=adata_subset.obs_names,
columns=adata_subset.obs_names,
data=adata_subset.obsp["connectivities"].A.astype("float64"),
)
)
tp[0, 1].set_graph_xy(dfs[0], cost="geodesic")
tp = tp.solve(max_iterations=2, lse_mode=False)
ta = tp[0, 1].xy
assert isinstance(ta, TaggedArray)
assert isinstance(ta.data_src, np.ndarray)
assert ta.data_tgt is None
assert ta.tag == Tag.GRAPH
assert ta.cost == "geodesic"
tp[1, 2].set_graph_xy(dfs[1], cost="geodesic")
tp = tp.solve(max_iterations=2, lse_mode=False)
ta = tp[1, 2].xy
assert isinstance(ta, TaggedArray)
assert isinstance(ta.data_src, np.ndarray)
assert ta.data_tgt is None
assert ta.tag == Tag.GRAPH
assert ta.cost == "geodesic"
def test_geodesic_cost_set_xy_cost_sparse(self, adata_time):
tp = TemporalProblem(adata_time)
tp = tp.prepare("time", joint_attr="X_pca")
batch_column = "time"
unique_batches = adata_time.obs[batch_column].unique()
elements = []
for i in range(len(unique_batches) - 1):
batch1 = unique_batches[i]
batch2 = unique_batches[i + 1]
indices = np.where((adata_time.obs[batch_column] == batch1) | (adata_time.obs[batch_column] == batch2))[0]
adata_subset = adata_time[indices]
sc.pp.neighbors(adata_subset, n_neighbors=15, use_rep="X_pca")
sparse_matrix = adata_subset.obsp["connectivities"].astype("float64")
row_names = adata_subset.obs_names.to_series()
col_names = adata_subset.obs_names.to_series()
elements.append((sparse_matrix, row_names, col_names))
tp[0, 1].set_graph_xy(elements[0], cost="geodesic")
tp = tp.solve(max_iterations=2, lse_mode=False)
ta = tp[0, 1].xy
assert isinstance(ta, TaggedArray)
assert isinstance(ta.data_src, csr_matrix)
assert ta.data_tgt is None
assert ta.tag == Tag.GRAPH
assert ta.cost == "geodesic"
tp[1, 2].set_graph_xy(elements[1], cost="geodesic")
tp = tp.solve(max_iterations=2, lse_mode=False)
ta = tp[1, 2].xy
assert isinstance(ta, TaggedArray)
assert isinstance(ta.data_src, csr_matrix)
assert ta.data_tgt is None
assert ta.tag == Tag.GRAPH
assert ta.cost == "geodesic"
@pytest.mark.parametrize("callback_kwargs", [{}, {"n_neighbors": 3}, {"foo": "bar"}])
def test_graph_construction_callback(self, adata_time: AnnData, callback_kwargs: Mapping[str, Any]):
eps = 0.5
expected_keys = [(0, 1), (1, 2)]
problem = TemporalProblem(adata=adata_time)
if "foo" in callback_kwargs:
with pytest.raises(TypeError):
problem = problem.prepare(
"time", cost="geodesic", xy_callback="graph-construction", xy_callback_kwargs=callback_kwargs
)
return
problem = problem.prepare(
"time", cost="geodesic", xy_callback="graph-construction", xy_callback_kwargs=callback_kwargs
)
problem = problem.solve(epsilon=eps, lse_mode=False)
assert problem[0, 1].xy.cost == "geodesic"
for key, subsol in problem.solutions.items():
assert isinstance(subsol, BaseSolverOutput)
assert key in expected_keys
if "n_neighbors" in callback_kwargs:
callback_kwargs["n_neighbors"] = callback_kwargs["n_neighbors"] + 20
problem2 = TemporalProblem(adata=adata_time)
problem2 = problem2.prepare(
"time", cost="geodesic", xy_callback="graph-construction", xy_callback_kwargs=callback_kwargs
)
assert np.sum(problem2[0, 1].xy.data_src.sum(axis=1) != problem[0, 1].xy.data_src.sum(axis=1)) > 0
assert np.all(problem2[0, 1].xy.data_src.sum(axis=1) > problem[0, 1].xy.data_src.sum(axis=1))
@pytest.mark.parametrize("forward", [True, False])
def test_geodesic_cost_downstream(self, adata_time: AnnData, forward: bool):
# TODO(@MUCDK) add test for failure case
adata_time = adata_time[adata_time.obs["time"].isin([0, 1])]
tp = TemporalProblem(adata_time)
tp = tp.prepare("time", joint_attr="X_pca")
batch_column = "time"
unique_batches = adata_time.obs[batch_column].unique()
dfs = []
for i in range(len(unique_batches) - 1):
batch1 = unique_batches[i]
batch2 = unique_batches[i + 1]
indices = np.where((adata_time.obs[batch_column] == batch1) | (adata_time.obs[batch_column] == batch2))[0]
adata_subset = adata_time[indices]
sc.pp.neighbors(adata_subset, n_neighbors=len(adata_subset), use_rep="X_pca")
df = pd.DataFrame(
index=adata_subset.obs_names,
columns=adata_subset.obs_names,
data=adata_subset.obsp["connectivities"].A.astype("float64"),
)
order = pd.concat(
(tp[batch1, batch2].adata_src.obs_names.to_series(), tp[batch1, batch2].adata_tgt.obs_names.to_series())
)
df = df.loc[order, :]
df = df.loc[:, order]
dfs.append(df)
tp[0, 1].set_graph_xy(dfs[0], cost="geodesic")
tp = tp.solve(max_iterations=5, lse_mode=False)
assert isinstance(tp[0, 1].solution, GraphOTTOutput)
ta = tp[0, 1].xy
assert isinstance(ta, TaggedArray)
assert isinstance(ta.data_src, np.ndarray)
assert ta.data_tgt is None
assert ta.tag == Tag.GRAPH
assert ta.cost == "geodesic"
func = tp.push if forward else tp.pull
out = func(0, 1, "celltype", "A", key_added=None)
assert isinstance(out, jnp.ndarray)
assert jnp.sum(jnp.isnan(out)) == 0
adata_time.obs["celltype"] = adata_time.obs["celltype"].astype("category")
df = tp.cell_transition(0, 1, "celltype", "celltype", forward=forward)
assert isinstance(df, pd.DataFrame)
assert df.isna().sum().sum() == 0
assert df.sum().sum() > 0
@pytest.mark.parametrize("args_to_check", [sinkhorn_args_1, sinkhorn_args_2])
def test_pass_arguments(self, adata_time: AnnData, args_to_check: Mapping[str, Any]):
problem = TemporalProblem(adata=adata_time)
adata_time = adata_time[adata_time.obs["time"].isin((0, 1))]
problem = problem.prepare(
time_key="time",
policy="sequential",
)
problem = problem.solve(**args_to_check)
key = (0, 1)
solver = problem[key].solver.solver
args = sinkhorn_solver_args if args_to_check["rank"] == -1 else lr_sinkhorn_solver_args
for arg, val in args.items():
assert hasattr(solver, val)
el = getattr(solver, val)[0] if isinstance(getattr(solver, val), tuple) else getattr(solver, val)
assert el == args_to_check[arg]
lin_prob = problem[key]._solver._problem
for arg, val in lin_prob_args.items():
assert hasattr(lin_prob, val)
el = getattr(lin_prob, val)[0] if isinstance(getattr(lin_prob, val), tuple) else getattr(lin_prob, val)
assert el == args_to_check[arg]
geom = lin_prob.geom
for arg, val in geometry_args.items():
assert hasattr(geom, val)
el = getattr(geom, val)[0] if isinstance(getattr(geom, val), tuple) else getattr(geom, val)
if arg == "epsilon":
eps_processed = getattr(geom, val)
assert isinstance(eps_processed, epsilon_scheduler.Epsilon)
assert eps_processed.target == args_to_check[arg], arg
else:
assert getattr(geom, val) == args_to_check[arg], arg
assert el == args_to_check[arg]
args = pointcloud_args if args_to_check["rank"] == -1 else lr_pointcloud_args
for arg, val in args.items():
el = getattr(geom, val)[0] if isinstance(getattr(geom, val), tuple) else getattr(geom, val)
assert hasattr(geom, val)
if arg == "cost":
assert type(el) == type(args_to_check[arg]) # noqa: E721
else:
assert el == args_to_check[arg]