-
Notifications
You must be signed in to change notification settings - Fork 8
/
minimum-path-sum.js
46 lines (43 loc) · 1.06 KB
/
minimum-path-sum.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
// Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
//
// Note: You can only move either down or right at any point in time.
//
// Example:
//
//
// Input:
// [
// [1,3,1],
// [1,5,1],
// [4,2,1]
// ]
// Output: 7
// Explanation: Because the path 1→3→1→1→1 minimizes the sum.
//
//
/**
* @param {number[][]} grid
* @return {number}
*/
var minPathSum = function(grid) {
var m = grid.length,
n = grid[0].length;
var paths = new Array(m);
for (var i = 0;i < m;++i) {
paths[i] = new Array(n);
}
paths[0][0] = grid[0][0];
for (i = 1;i < n;++i) {
paths[0][i] = grid[0][i] + paths[0][i - 1];
}
for (i = 1;i < m;++i) {
paths[i][0] = grid[i][0] + paths[i-1][0];
}
var j;
for (i = 1;i < m;++i) {
for (j = 1;j < n;++j) {
paths[i][j] = Math.min(paths[i-1][j], paths[i][j-1]) + grid[i][j];
}
}
return paths[m-1][n-1];
};