-
Notifications
You must be signed in to change notification settings - Fork 8
/
unique-paths-ii.js
77 lines (72 loc) · 1.91 KB
/
unique-paths-ii.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
// A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
//
// The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
//
// Now consider if some obstacles are added to the grids. How many unique paths would there be?
//
//
//
// An obstacle and empty space is marked as 1 and 0 respectively in the grid.
//
// Note: m and n will be at most 100.
//
// Example 1:
//
//
// Input:
// [
// [0,0,0],
// [0,1,0],
// [0,0,0]
// ]
// Output: 2
// Explanation:
// There is one obstacle in the middle of the 3x3 grid above.
// There are two ways to reach the bottom-right corner:
// 1. Right -> Right -> Down -> Down
// 2. Down -> Down -> Right -> Right
//
//
/**
* @param {number[][]} obstacleGrid
* @return {number}
*/
var uniquePathsWithObstacles = function(obstacleGrid) {
var m = obstacleGrid.length,
n = obstacleGrid[0].length;
var getPaths = function(i, j) {
if (obstacleGrid[i][j]) {
return 0;
}
var p1, p2;
if (i - 1 < 0 || obstacleGrid[i-1][j]) {
p1 = 0;
} else {
p1 = paths[i-1][j];
}
if (j - 1 < 0 || obstacleGrid[i][j-1]) {
p2 = 0;
} else {
p2 = paths[i][j-1];
}
return p1 + p2;
};
var paths = new Array(m);
for (var i = 0;i < m;++i) {
paths[i] = new Array(n);
}
paths[0][0] = 1 - obstacleGrid[0][0];
for (i = 1;i < n;++i) {
paths[0][i] = getPaths(0, i);
}
for (i = 1;i < m;++i) {
paths[i][0] = getPaths(i, 0);
}
var j;
for (i = 1;i < m;++i) {
for (j = 1;j < n;++j) {
paths[i][j] = getPaths(i,j);
}
}
return paths[m-1][n-1];
};