Skip to content

Latest commit

 

History

History
512 lines (488 loc) · 32.4 KB

MANUAL.md

File metadata and controls

512 lines (488 loc) · 32.4 KB

OSCAR

Manual

Basic simulation

Essentially, to make a basic simulation one must:

  1. import the OSCAR object from core_fct.mod_process;
  2. define the For (forcing data) and Par (parameters) arguments;
  3. call OSCAR with these arguments (and possibly other optional arguments, like Ini (initial state)).

The run_scripts folder contains a few extra basic examples.

Core structure

Here is a quick overview of the files contained in the core_fct folder and their content.

File Content
cls_main definition of the Model and Process classes upon which OSCAR v3 is based
fct_calib functions to calibrate some of the model's parameters
fct_genD functions to generate consistent timeseries of drivers
fct_genMC functions to generate the Monte Carlo setup
fct_loadD functions to load the primary drivers
fct_loadP functions to load the primary parameters, some being loaded from files and others manually written therein
fct_process_alt functions to replace some processes with alternative formulations
fct_misc a bunch of useful functions, notably including the solving schemes, a generic loading function called load_data, and a function to regionally aggregate datasets called aggreg_region
mod_process equations for the physical processes constituting OSCAR; also contains OSCAR and submodels

Dimensions, drivers, variables and parameters

Dimensions

Here is a table summerizing the various dimensions over which OSCAR's input, internal and output data may be defined. Additional dimensions can be added freely to the Ini, For and/or Par arguments, in which case they will be conserved throughout the run, which allows easily parallelizing experiments (e.g. scenarios). This can be heavy on the memory, however.

Dims Description
year time axis
config Monte Carlo elements
spc_halo species of halogenated compounds
box_osurf pools for the surface ocean carbon cycling
reg_land land carbon-cycle regions
bio_land land carbon-cycle biomes
bio_from origine biomes of the land-use perturbations
bio_to destination biomes of the land-use perturbations
box_hwp pools of harvested wood products
reg_pf regions specific to the permafrost module
box_thaw pools of thawed permafrost
spc_bb species from biomass burning
reg_slcf regions specific to SLCF regional saturation effects
reg_bcsnow regions specific to BC deposition on snow

Drivers

Drivers are the forcing data that need to be prescribed to the model for it to be able to run. They must be prescribed using the For argument when calling a Model object. The model automatically connects the various processes it is made of, and deduces what input data are required, so that it will display an error message if some drivers are missing in For. Assuming OSCAR has been imported, a list of the model's drivers can be displayed with OSCAR.var_in. More information on the drivers is available in core_fct.fct_loadD.

In code In papers Units Dims
Eff $E_\mathrm{FF}$ PgC yr-1 year, reg_land
E_CH4 $E_\mathrm{CH_4}$ TgC yr-1 year, reg_land
E_N2O $E_\mathrm{N_2O}$ TgN yr-1 year, reg_land
E_Xhalo $E_\mathrm{X}$ Gg yr-1 year, reg_land, spc_halo
E_NOX $E_\mathrm{NO_x}$ TgN yr-1 year, reg_land
E_CO $E_\mathrm{CO}$ TgC yr-1 year, reg_land
E_VOC $E_\mathrm{VOC}$ Tg yr-1 year, reg_land
E_SO2 $E_\mathrm{SO_2}$ TgS yr-1 year, reg_land
E_NH3 $E_\mathrm{NH_3}$ TgN yr-1 year, reg_land
E_OC $E_\mathrm{OC}$ TgC yr-1 year, reg_land
E_BC $E_\mathrm{BC}$ TgC yr-1 year, reg_land
d_Acover $\delta A$ Mha yr-1 year, reg_land, bio_from, bio_to
d_Hwood $\delta H$ PgC yr-1 year, reg_land, bio_land
d_Ashift $\delta S$ Mha yr-1 year, reg_land, bio_from, bio_to
RF_contr $\mathrm{RF}_\mathrm{con}$ W m-2 year
RF_volc $\mathrm{RF}_\mathrm{volc}$ W m-2 year
RF_solar $\mathrm{RF}_\mathrm{solar}$ W m-2 year

Variables

Each of the model's variable is defined through a Process object; and a Model object is essentially a collection of connected processes. Prognostic variables (i.e. state variables) are those defined through a time-differential equation, while diagnostic variables are defined at any time t as a function of prognostic variables and/or other diagnostic variables at that same time t. When solving, at every single timestep, the model first solves all prognostic variables, and only then calculates the diagnostic variables. Assuming OSCAR has been imported, a list of the model's variables can be displayed with OSCAR.proc_all, or somewhat equivalently with OSCAR.var_mid | OSCAR.var_out. Prognostic and diagnostic variables can be displayed with OSCAR.var_prog and OSCAR.var_diag, respectively. More information on each variable/process is available in core_fct.fct_process.

In code In papers Units Dims Prog?
D_pCO2 $\mathcal{F}_\mathrm{pCO_2}$ ppm -
D_mld $\Delta h_\mathrm{mld}$ m -
D_dic $\Delta \mathrm{dic}$ µmol kg-1 -
D_Fin $\Delta F_\mathrm{in}$ PgC yr-1 box_osurf
D_Fout $\Delta F_\mathrm{out}$ PgC yr-1 box_osurf
D_Fcirc $\Delta F_\mathrm{circ}$ PgC yr-1 box_osurf
D_Focean $\Delta F_\mathrm{\downarrow,ocean}$ PgC yr-1 -
D_Cosurf $\Delta C_\mathrm{surf}$ PgC - yes
f_fert $\mathcal{F}_\mathrm{fert}$ 1 reg_land, bio_land
D_npp $\Delta \mathrm{npp}$ PgC Mha-1 yr-1 reg_land, bio_land
f_igni $\mathcal{F}_\mathrm{igni}$ 1 reg_land, bio_land
D_efire $\Delta e_\mathrm{fire}$ PgC Mha-1 yr-1 reg_land, bio_land
D_eharv $\Delta e_\mathrm{harv}$ PgC Mha-1 yr-1 reg_land, bio_land
D_egraz $\Delta e_\mathrm{graz}$ PgC Mha-1 yr-1 reg_land, bio_land
D_fmort1 $\Delta f_\mathrm{mort1}$ PgC Mha-1 yr-1 reg_land, bio_land
D_fmort2 $\Delta f_\mathrm{mort2}$ PgC Mha-1 yr-1 reg_land, bio_land
f_resp $\mathcal{F}_\mathrm{resp}$ 1 reg_land, bio_land
D_rh1 $\Delta \mathrm{rh}_1$ PgC Mha-1 yr-1 reg_land, bio_land
D_fmet $\Delta f_\mathrm{met}$ PgC Mha-1 yr-1 reg_land, bio_land
D_rh2 $\Delta \mathrm{rh}_2$ PgC Mha-1 yr-1 reg_land, bio_land
D_nbp - PgC Mha-1 yr-1 reg_land, bio_land
D_cveg $\Delta c_\mathrm{veg}$ PgC Mha-1 reg_land, bio_land yes
D_csoil1 $\Delta c_\mathrm{soil1}$ PgC Mha-1 reg_land, bio_land yes
D_csoil2 $\Delta c_\mathrm{soil2}$ PgC Mha-1 reg_land, bio_land yes
D_Fveg_bk $\delta C_\mathrm{veg,bk}$ PgC yr-1 reg_land, bio_land
D_Fsoil1_bk $\delta C_\mathrm{soil1,bk}$ PgC yr-1 reg_land, bio_land
D_Fsoil2_bk $\delta C_\mathrm{soil2,bk}$ PgC yr-1 reg_land, bio_land
D_Fslash1 $\Delta F_\mathrm{slash1}$ PgC yr-1 reg_land, bio_land
D_Fslash2 $\Delta F_\mathrm{slash2}$ PgC yr-1 reg_land, bio_land
D_Fhwp $\Delta F_\mathrm{hwp}$ PgC yr-1 reg_land, bio_land, box_hwp
D_NPP_bk $\Delta \mathrm{NPP}_\mathrm{bk}$ PgC yr-1 reg_land, bio_land
D_Efire_bk $\Delta E_\mathrm{fire,bk}$ PgC yr-1 reg_land, bio_land
D_Eharv_bk $\Delta E_\mathrm{harv,bk}$ PgC yr-1 reg_land, bio_land
D_Egraz_bk $\Delta E_\mathrm{graz,bk}$ PgC yr-1 reg_land, bio_land
D_Fmort1_bk $\Delta F_\mathrm{mort1,bk}$ PgC yr-1 reg_land, bio_land
D_Fmort2_bk $\Delta F_\mathrm{mort2,bk}$ PgC yr-1 reg_land, bio_land
D_Rh1_bk $\Delta \mathrm{Rh}_\mathrm{1,bk}$ PgC yr-1 reg_land, bio_land
D_Fmet_bk $\Delta F_\mathrm{met,bk}$ PgC yr-1 reg_land, bio_land
D_Rh2_bk $\Delta \mathrm{Rh}_\mathrm{2,bk}$ PgC yr-1 reg_land, bio_land
D_Ehwp $\Delta E_\mathrm{hwp}$ PgC yr-1 reg_land, bio_land, box_hwp
D_NBP_bk - PgC yr-1 reg_land, bio_land
D_Eluc $\Delta E_\mathrm{LUC}$ PgC yr-1 -
D_Fland $\Delta F_\mathrm{\downarrow,land}$ PgC yr-1 -
D_Flasc $\Delta F_\mathrm{LASC}$ PgC yr-1 -
D_Aland $\Delta A$ Mha reg_land, bio_land yes
D_Cveg_bk $\Delta C_\mathrm{veg,bk}$ PgC reg_land, bio_land yes
D_Csoil1_bk $\Delta C_\mathrm{soil1,bk}$ PgC reg_land, bio_land yes
D_Csoil2_bk $\Delta C_\mathrm{soil2,bk}$ PgC reg_land, bio_land yes
D_Chwp $\Delta C_\mathrm{hwp}$ PgC reg_land, bio_land, box_hwp yes
f_resp_pf - 1 reg_pf
D_pthaw_bar $\Delta \bar{p}_\mathrm{thaw}$ 1 reg_pf
d_pthaw $\textstyle{\frac{\mathrm{d}}{\mathrm{d}t}}p_\mathrm{thaw}$ yr-1 reg_pf
D_pthaw $\Delta p_\mathrm{thaw}$ 1 reg_pf yes
D_Fthaw $\Delta F_\mathrm{thaw}$ PgC yr-1 reg_pf
D_Ethaw - PgC yr-1 reg_pf, box_thaw
D_Epf $\Delta E_\mathrm{pf}$ PgC yr-1 reg_pf
D_Epf_CO2 - PgC yr-1 reg_pf
D_Epf_CH4 - TgC yr-1 reg_pf
D_Cfroz $\Delta C_\mathrm{froz}$ PgC reg_pf yes
D_Cthaw $\Delta C_\mathrm{thaw}$ PgC reg_pf, box_thaw yes
D_CO2 $\Delta \mathrm{CO_2}$ ppm - yes
d_CO2 $\textstyle{\frac{\mathrm{d}}{\mathrm{d}t}}\mathrm{CO_2}$ ppm yr-1 -
AF - 1 -
kS - yr-1 -
RF_CO2 $\Delta \mathrm{RF}^\mathrm{CO_2}$ W m-2 -
D_Efire $\Delta E_\mathrm{fire}$ PgC yr-1 reg_land, bio_land
D_Ebb_nat - TgX yr-1 reg_land, bio_land, spc_bb
D_Ebb_ant - TgX yr-1 reg_land, bio_land, spc_bb
D_Ebb $\Delta E_\mathrm{bb }$ TgX yr-1 reg_land, bio_land, spc_bb
D_CH4_lag $\Delta \mathrm{CH_4}_\mathrm{lag}$ ppb - yes
D_N2O_lag $\Delta \mathrm{N_2O}_\mathrm{lag}$ ppb - yes
D_Xhalo_lag $\Delta X_\mathrm{lag}$ ppt spc_halo yes
D_Ta $\Delta T_A$ K -
D_f_Qa $\frac{\Delta Q_A}{Q_{A,0}}$ 1 -
f_kOH $\mathcal{F}_\mathrm{OH}$ 1 -
D_Foh_CH4 - TgC yr-1 -
D_Fhv_CH4 - TgC yr-1 -
D_Fsoil_CH4 - TgC yr-1 -
D_Focean_CH4 - TgC yr-1 -
D_Fsink_CH4 $\Delta F_\mathrm{\downarrow}^\mathrm{CH_4}$ TgC yr-1 -
D_Foxi_CH4 - PgC yr-1 -
D_ewet $\Delta e_\mathrm{wet}$ TgC Mha-1 yr-1 reg_land
D_Awet $\Delta A_\mathrm{wet}$ Mha reg_land
D_Ewet $\Delta E_\mathrm{wet}$ TgC yr-1 reg_land
D_CH4 $\Delta \mathrm{CH_4}$ ppb - yes
tau_CH4 - yr -
RF_CH4 $\Delta \mathrm{RF}^\mathrm{CH_4}$ W m-2 -
RF_H2Os $\Delta \mathrm{RF}^\mathrm{H_2Os}$ W m-2 -
D_f_ageair - 1 -
f_hv $\mathcal{F}_\mathrm{h\nu}$ 1 -
D_Fhv_N2O - TgN yr-1 -
D_Fsink_N2O $\Delta F_\mathrm{\downarrow}^\mathrm{N_2O}$ TgN yr-1 -
D_N2O $\Delta \mathrm{N_2O}$ ppb - yes
tau_N2O - yr -
RF_N2O $\Delta \mathrm{RF}^\mathrm{N_2O}$ W m-2 -
D_Foh_Xhalo - Gg yr-1 spc_halo
D_Fhv_CH4 - Gg yr-1 spc_halo
D_Fother_CH4 - Gg yr-1 spc_halo
D_Fsink_CH4 $\Delta F_\mathrm{\downarrow}^X$ Gg yr-1 spc_halo
D_Xhalo $\Delta X$ ppt spc_halo yes
RF_Xhalo $\Delta \mathrm{RF}^X$ W m-2 spc_halo
RF_halo $\Delta \mathrm{RF}^\mathrm{halo}$ W m-2 -
D_O3t $\Delta \mathrm{O_3t}$ DU -
 RF_O3t $\Delta \mathrm{RF}^\mathrm{O_3t}$ W m-2  -
 D_EESC $\Delta \mathrm{EESC}$ ppt  -
 D_O3s $\Delta \mathrm{O_3s}$ DU  -
 RF_O3s $\Delta \mathrm{RF}^\mathrm{O_3s}$ W m-2  -
D_Edms $\Delta E_\mathrm{DMS}$ TgS yr-1 -
D_Ebvoc $\Delta E_\mathrm{BVOC}$ Tg yr-1 -
D_Edust - Tg yr-1 -
D_Esalt - Tg yr-1 -
 D_SO4 $\Delta \mathrm{SO_4}$ Tg  -
 D_POA $\Delta \mathrm{POA}$ Tg  -
 D_BC $\Delta \mathrm{BC}$ Tg  -
 D_NO3 $\Delta \mathrm{NO_3}$ Tg  -
 D_SOA $\Delta \mathrm{SOA}$ Tg  -
 D_Mdust - Tg  -
 D_Msalt - Tg  -
 RF_SO4 $\Delta \mathrm{RF}^\mathrm{SO_4}$ W m-2  -
 RF_POA $\Delta \mathrm{RF}^\mathrm{POA}$ W m-2  -
 RF_BC $\Delta \mathrm{RF}^\mathrm{BC}$ W m-2  -
 RF_NO3 $\Delta \mathrm{RF}^\mathrm{NO_3}$ W m-2  -
 RF_SOA $\Delta \mathrm{RF}^\mathrm{SOA}$ W m-2  -
 RF_dust - W m-2  -
 RF_salt - W m-2  -
 D_AERsol $\Delta \mathrm{AER}_\mathrm{sol}$ Tg  -
 RF_cloud1 - W m-2  -
 RF_cloud2 - W m-2  -
 RF_cloud $\Delta \mathrm{RF}^\mathrm{cloud}$ W m-2  -
RF_BCsnow $\Delta \mathrm{RF}^\mathrm{BCsnow}$ W m-2  -
 RF_lcc $\Delta \mathrm{RF}^\mathrm{LCC}$ W m-2  -
 RF_nonCO2 - W m-2  -
 RF_wmghg - W m-2  -
 RF_strat - W m-2  -
 RF_scatter - W m-2  -
 RF_absorb - W m-2  -
 RF_AERtot - W m-2  -
 RF_slcf - W m-2  -
 RF_alb - W m-2  -
 RF $\Delta \mathrm{RF}$ W m-2  -
 RF_warm $\Delta \mathrm{RF}_\mathrm{warm}$ W m-2  -
 RF_atm $\Delta \mathrm{RF}_\mathrm{atm}$ W m-2  -
 D_Tg $\Delta T_G$ - yes
 D_Td $\Delta T_D$ - yes
 d_Tg $\textstyle{\frac{\mathrm{d}}{\mathrm{d}t}}T_G$ K yr-1  -
 CFF - W m-2 K-1  -
 D_Tl $\Delta T_L$ reg_land
 D_To $\Delta T_S$ -
 D_Pg $\Delta P_G$ mm yr-1  - yes
 D_Pl $\Delta P_L$ mm yr-1  reg_land
 D_OHC $\Delta \mathrm{OHC}$ ZJ  - yes
 d_OHC $\textstyle{\frac{\mathrm{d}}{\mathrm{d}t}}\mathrm{OHC}$ ZJ yr-1  -
 D_pH - -

† default; can be altered through the fct_process_alt functions.

Parameters

Parameters are implicitly defined when creating a model's processes. When OSCAR is run, it does not check whether the needed parameters are actually provided in the Par argument. Primary parameters can be loaded with the load_all_param function defined in core_fct.fct_loadP. Many parameters have several possible values, and these different configurations are defined along the various mod_ dimensions of the dataset containing the primary parameters. Sets of randomly drawn parameters for Monte Carlo runs can be generated using the generate_config function defined in core_fct.fct_genMC. More information on each parameter is available in core_fct.fct_loadP.

In code In papers Units Dims Mods
a_dic $\alpha_\mathrm{sol}$ µmol kg-1 [ppm m-3]-1  - -
mld_0 $h_{\mathrm{mld},0}$ - mod_Focean_struct
A_ocean $A_\mathrm{ocean}$ m2  - mod_Focean_struct
To_0 $T_{S,0}$ - mod_Focean_struct
v_fg $\nu_\mathrm{fg}$ yr-1  - mod_Focean_struct
p_circ $\pi_\mathrm{circ}$ box_osurf mod_Focean_struct
t_circ $\tau_\mathrm{circ}$ yr  box_osurf mod_Focean_struct
pCO2_is_Pade - bool  - mod_Focean_chem
p_mld $\pi_\mathrm{mld}$ - mod_Focean_trans
g_mld $\gamma_\mathrm{mld}$ K-1  - mod_Focean_trans
fert_is_Log - bool  - mod_Fland_fert
t_shift $\tau_\mathrm{shift}$ yr  - -
npp_0 $\eta$ PgC Mha-1 yr-1  reg_land, bio_land mod_Fland_preind
igni_0 $\iota$ yr-1  reg_land, bio_land mod_Efire_preind
harv_0 $\epsilon_\mathrm{harv}$ yr-1  reg_land, bio_land mod_Eharv_preind
graz_0 $\epsilon_\mathrm{graz}$ yr-1  reg_land, bio_land mod_Egraz_preind
mu1_0 $\mu_1$ yr-1  reg_land, bio_land mod_Fland_preind
mu2_0 $\mu_2$ yr-1  reg_land, bio_land mod_Fland_preind
muM_0 $\mu_\mathrm{met}$ yr-1  reg_land, bio_land mod_Fland_preind
rho1_0 $\rho_1$ yr-1  reg_land, bio_land mod_Fland_preind
rho2_0 $\rho_2$ yr-1  reg_land, bio_land mod_Fland_preind
p_agb $\pi_\mathrm{agb}$ reg_land, bio_land mod_Eluc_agb
b_npp $\beta_\mathrm{npp}$ reg_land, bio_land mod_Fland_trans
b2_npp $\tilde{\beta}_\mathrm{npp}$ reg_land, bio_land mod_Fland_trans
CO2_cp $\mathrm{CO_2}_\mathrm{cp}$ ppm  reg_land, bio_land mod_Fland_trans
g_nppT $\gamma_{\mathrm{npp},T}$ K-1  reg_land, bio_land mod_Fland_trans, mod_Fland_fert
g_nppP $\gamma_{\mathrm{npp},P}$ [mm yr-1]-1  reg_land, bio_land mod_Fland_trans, mod_Fland_fert
g_rhoT $\gamma_{\mathrm{resp},T}$ K-1  reg_land, bio_land mod_Fland_trans, mod_Fland_resp
g_rhoT1 $\gamma_{\mathrm{resp},T_1}$ K-1  reg_land, bio_land mod_Fland_trans, mod_Fland_resp
g_rhoT2 $\gamma_{\mathrm{resp},T_2}$ K-2  reg_land, bio_land mod_Fland_trans, mod_Fland_resp
g_rhoP $\gamma_{\mathrm{resp},P}$ [mm yr-1]-1  reg_land, bio_land mod_Fland_trans
g_igniC $\gamma_{\mathrm{igni},C}$ ppm-1  reg_land, bio_land mod_Efire_trans
g_igniT $\gamma_{\mathrm{igni},T}$ K-1  reg_land, bio_land mod_Efire_trans
g_igniP $\gamma_{\mathrm{igni},P}$ [mm yr-1]-1  reg_land, bio_land mod_Efire_trans
t_hwp $\tau_\mathrm{hwp}$ yr  box_hwp mod_Ehwp_tau
w_t_hwp - - mod_Ehwp_speed
p_hwp_bb - box_hwp -
p_hwp $\pi_\mathrm{hwp}$ reg_land, bio_land, box_hwp mod_Ehwp_bb
a_bb $\alpha_\mathrm{bb}$ TgX PgC-1  reg_land, bio_land, spc_bb -
Cfroz_0 $C_{\mathrm{froz},0}$ PgC  reg_pf mod_Epf_main
w_clim_pf $\omega_{T_\mathrm{pf}}$ reg_pf mod_Epf_main
g_respT_pf $\gamma_{\mathrm{pf},T_1}$ K-1  reg_pf mod_Epf_main
g_respT2_pf $\gamma_{\mathrm{pf},T_2}$ K-2  reg_pf mod_Epf_main
k_resp_pf $\kappa_\mathrm{resp,pf}$ reg_pf mod_Epf_main
pthaw_min $p_\mathrm{thaw,min}$ reg_pf mod_Epf_main
g_pthaw $\gamma_{p_\mathrm{thaw}}$ K-1  reg_pf mod_Epf_main
k_pthaw $\kappa_{p_\mathrm{thaw}}$ reg_pf mod_Epf_main
v_thaw $\nu_\mathrm{thaw}$ yr-1  reg_pf mod_Epf_main
v_froz $\nu_\mathrm{froz}$ yr-1  reg_pf mod_Epf_main
p_pf_thaw $\pi_\mathrm{thaw}$ reg_pf, box_thaw mod_Epf_main
t_pf_thaw $\tau_\mathrm{thaw}$ yr  reg_pf, box_thaw mod_Epf_main
p_pf_inst - - -
p_pf_CH4 - - mod_Epf_CH4
ewet_0 $e_{\mathrm{wet},0}$ TgC yr-1  reg_land mod_Ewet_preind
Awet_0 $A_{\mathrm{wet},0}$ Mha  reg_land mod_Ewet_preind
p_wet $\pi_\mathrm{wet}$ reg_land, bio_land mod_Ewet_preind
g_wetC $\gamma_{\mathrm{wet},C}$ ppm-1  reg_land mod_Awet_trans
g_wetT $\gamma_{\mathrm{wet},T}$ K-1  reg_land mod_Awet_trans
g_wetP $\gamma_{\mathrm{wet},P}$ [mm yr-1]-1  reg_land mod_Awet_trans
a_CO2 $\alpha_\mathrm{atm}^\mathrm{CO_2}$ PgC ppm-1  - -
a_CH4 $\alpha_\mathrm{atm}^\mathrm{CH_4}$ TgC ppb-1  - -
a_N2O $\alpha_\mathrm{atm}^\mathrm{N_2O}$ TgC ppb-1  - -
a_Xhalo $\alpha_\mathrm{atm}^X$ Gg ppt-1  spc_halo -
a_SO4 - Tg TgS-1  - -
a_POM $\alpha_\mathrm{OM}^\mathrm{OC}$ Tg TgC-1  - mod_POA_conv
a_NO3 - Tg TgN-1  - -
CO2_0 $\mathrm{CO_2}_0$ ppm  - -
CH4_0 $\mathrm{CH_4}_0$ ppb  - -
N2O_0 $\mathrm{N_2O}_0$ ppb  - -
Xhalo_0 $X_0$ ppt  spc_halo -
p_CH4geo - - -
g_ageair $\gamma_\mathrm{age}$ K-1  - mod_Fhv_ageair
w_t_OH - - -
w_t_hv - - -
t_OH_CH4 $\tau_\mathrm{OH}^\mathrm{CH_4}$ yr  - mod_Foh_tau
t_hv_CH4 $\tau_\mathrm{h\nu}^\mathrm{CH_4}$ yr  - -
t_soil_CH4 $\tau_\mathrm{soil}^\mathrm{CH_4}$ yr  - -
t_ocean_CH4 $\tau_\mathrm{ocean}^\mathrm{CH_4}$ yr  - -
x_OH_Ta $\chi_\mathrm{T_A}^\mathrm{OH}$ - mod_Foh_trans
x_OH_Qa $\chi_\mathrm{Q_A}^\mathrm{OH}$ - mod_Foh_trans
x_OH_O3s $\chi_\mathrm{O_3s}^\mathrm{OH}$ - mod_Foh_trans
x_OH_CH4 $\chi_\mathrm{CH4}^\mathrm{OH}$ - mod_Foh_trans
x_OH_NOX $\tilde{\chi}_\mathrm{NO_x}^\mathrm{OH}$ - mod_Foh_trans
x_OH_CO $\tilde{\chi}_\mathrm{CO}^\mathrm{OH}$ - mod_Foh_trans
x_OH_VOC $\tilde{\chi}_\mathrm{VOC}^\mathrm{OH}$ - mod_Foh_trans
x2_OH_NOX $\chi_\mathrm{NO_x}^\mathrm{OH}$ [TgN yr-1]-1  - mod_Foh_trans
x2_OH_CO $\chi_\mathrm{CO}^\mathrm{OH}$ [TgC yr-1]-1  - mod_Foh_trans
x2_OH_VOC $\chi_\mathrm{VOC}^\mathrm{OH}$ [Tg yr-1]-1  - mod_Foh_trans
w_clim_Ta $\kappa_\mathrm{T_A}$ - -
k_Qa $\kappa_\mathrm{Q_A}$ - -
Ta_0 $T_{A,0}$ - -
k_svp $\kappa_\mathrm{svp}$ - -
T_svp $T_\mathrm{svp}$ - -
O3s_0 $\mathrm{O_3s}_0$ DU  - -
Enat_NOX $E_\mathrm{nat}^\mathrm{NO_x}$ TgN yr-1  - -
Enat_CO $E_\mathrm{nat}^\mathrm{CO}$ TgC yr-1  - -
Enat_VOC $E_\mathrm{nat}^\mathrm{VOC}$ Tg yr-1  - -
kOH_is_Log - bool  - mod_Foh_fct
t_hv_N2O $\tau_\mathrm{h\nu}^\mathrm{N_2O}$ yr  - mod_Fhv_tau
x_hv_N2O $\chi_\mathrm{N2O}^\mathrm{h\nu}$ - mod_Fhv_trans
x_hv_EESC $\chi_\mathrm{EESC}^\mathrm{h\nu}$ - mod_Fhv_trans
x_hv_age $\chi_\mathrm{age}^\mathrm{h\nu}$ - mod_Fhv_trans
t_OH_Xhalo $\tau_\mathrm{OH}^X$ yr  spc_halo -
t_hv_Xhalo $\tau_\mathrm{h\nu}^X$ yr  spc_halo -
t_other_Xhalo $\tau_\mathrm{othr}^X$ yr  spc_halo -
p_reg_slcf $\pi_\mathrm{reg}$ reg_land, reg_slcf -
w_reg_NOX $\omega_\mathrm{NO_x}$ reg_slcf mod_O3t_regsat
w_reg_CO $\omega_\mathrm{CO}$ reg_slcf mod_O3t_regsat
w_reg_VOC $\omega_\mathrm{VOC}$ reg_slcf mod_O3t_regsat
x_O3t_CH4 $\chi_\mathrm{CH_4}^\mathrm{O_3t}$ DU  - mod_O3t_emis
x_O3t_NOX $\chi_\mathrm{NO_x}^\mathrm{O_3t}$ DU [TgN yr-1]-1  - mod_O3t_emis
x_O3t_CO $\chi_\mathrm{CO}^\mathrm{O_3t}$ DU [TgC yr-1]-1  - mod_O3t_emis
x_O3t_VOC $\chi_\mathrm{VOC}^\mathrm{O_3t}$ DU [Tg yr-1]-1  - mod_O3t_emis
G_O3t $\Gamma_\mathrm{O_3t}$ DU K-1  - mod_O3t_clim
t_lag $\tau_\mathrm{lag}$ yr  - -
p_fracrel $\pi_\mathrm{rel}^X$ spc_halo mod_O3s_fracrel
k_Br_Cl $\alpha_\mathrm{Cl}^\mathrm{Br}$ - -
n_Cl $n_\mathrm{Cl}^X$ spc_halo -
n_Br $n_\mathrm{Br}^X$ spc_halo -
EESC_x $\mathrm{EESC}_\times$ ppt  - -
k_EESC_N2O $\frac{\chi_\mathrm{N2O}^\mathrm{O_3s}}{\chi_\mathrm{EESC}^\mathrm{O_3s}}$ ppt ppb-1  - mod_O3s_nitrous, mod_O3s_fracrel
x_O3s_EESC $\chi_\mathrm{EESC}^\mathrm{O_3s}$ DU ppt-1  - mod_O3s_trans
G_O3s $\Gamma_\mathrm{O_3s}$ DU K-1  - mod_O3s_trans
w_reg_SO2 $\omega_\mathrm{SO_2}$ reg_slcf mod_SO4_regsat
w_reg_OC $\omega_\mathrm{OC}$ reg_slcf mod_POA_regsat
w_reg_BC $\omega_\mathrm{BC}$ reg_slcf mod_BC_regsat
t_SO2 $\tau_\mathrm{SO_2}$ yr  - mod_SO4_load
t_DMS $\tau_\mathrm{DMS}$ yr  - mod_SO4_load
G_SO4 $\Gamma_\mathrm{SO_4}$ Tg K-1  - mod_SO4_load
t_OMff $\tau_\mathrm{OM,ff}$ yr  - mod_POA_load
t_OMbb $\tau_\mathrm{OM,bb}$ yr  - mod_POA_load
G_POA $\Gamma_\mathrm{POA}$ Tg K-1  - mod_POA_load
t_BCff $\tau_\mathrm{BC,ff}$ yr  - mod_BC_load
t_BCbb $\tau_\mathrm{BC,bb}$ yr  - mod_BC_load
G_BC $\Gamma_\mathrm{BC}$ Tg K-1  - mod_BC_load
t_NOX $\tau_\mathrm{NO_x}$ yr  - mod_NO3_load
t_NH3 $\tau_\mathrm{NH_3}$ yr  - mod_NO3_load
G_NO3 $\Gamma_\mathrm{NO_3}$ Tg K-1  - mod_NO3_load
t_VOC $\tau_\mathrm{VOC}$ yr  - mod_SOA_load
t_BVOC $\tau_\mathrm{BVOC}$ yr  - mod_SOA_load
G_SOA $\Gamma_\mathrm{SOA}$ Tg K-1  - mod_SOA_load
t_dust - yr  - mod_Mdust_load
G_dust - Tg K-1  - mod_Mdust_load
t_salt - yr  - mod_Msalt_load
G_salt - Tg K-1  - mod_Msalt_load
p_sol_SO4 $\pi_\mathrm{sol}^\mathrm{SO_4}$ - mod_RFcloud_solub
p_sol_POA $\pi_\mathrm{sol}^\mathrm{POA}$ - mod_RFcloud_solub
p_sol_BC $\pi_\mathrm{sol}^\mathrm{BC}$ - mod_RFcloud_solub
p_sol_NO3 $\pi_\mathrm{sol}^\mathrm{NO_3}$ - mod_RFcloud_solub
p_sol_SOA $\pi_\mathrm{sol}^\mathrm{SOA}$ - mod_RFcloud_solub
p_sol_dust - - mod_RFcloud_solub
p_sol_salt - - mod_RFcloud_solub
rf_CO2 $\alpha_\mathrm{rf}^\mathrm{CO_2}$ W m-2  - -
rf_CH4 $\alpha_\mathrm{rf}^\mathrm{CH_4}$ W m-2 ppb-0.5  - -
rf_N2O $\alpha_\mathrm{rf}^\mathrm{N_2O}$ W m-2 ppb-0.5 - -
k_rf_H2Os $\frac{\alpha_\mathrm{rf}^\mathrm{H_2Os}}{\alpha_\mathrm{rf}^\mathrm{CH_4}}$ 1 - -
rf_Xhalo $\alpha_\mathrm{rf}^X$ W m-2 ppt-1  spc_halo -
rf_O3t $\alpha_\mathrm{rf}^\mathrm{O_3t}$ W m-2 DU-1  - mod_O3t_radeff
rf_O3s $\alpha_\mathrm{rf}^\mathrm{O_3s}$ W m-2 DU-1  - mod_O3s_radeff
rf_SO4 $\alpha_\mathrm{rf}^\mathrm{SO_4}$ W m-2 Tg-1  - mod_SO4_radeff
rf_POA $\alpha_\mathrm{rf}^\mathrm{POA}$ W m-2 Tg-1  - mod_POA_radeff
rf_BC $\alpha_\mathrm{rf}^\mathrm{BC}$ W m-2 Tg-1  - mod_BC_radeff
rf_NO3 $\alpha_\mathrm{rf}^\mathrm{NO_3}$ W m-2 Tg-1  - mod_NO3_radeff
rf_SOA $\alpha_\mathrm{rf}^\mathrm{SOA}$ W m-2 Tg-1  - mod_SOA_radeff
rf_dust - W m-2 Tg-1  - -
rf_salt - W m-2 Tg-1  - -
k_adj_BC $\kappa_\mathrm{adj}^\mathrm{BC}$ - mod_BC_adjust
Phi_0 $\Phi$ W m-2  - mod_RFcloud_erf, mod_RFcloud_solub
AERsol_0 $\mathrm{AER}_{\mathrm{sol},0}$ Tg  - mod_RFcloud_solub, mod_RFcloud_erf, mod_RFcloud_preind
p_reg_bcsnow $\pi_\mathrm{reg}$ reg_land, reg_bcsnow -
w_reg_bcsnow $\omega_\mathrm{BCsnow}$ reg_bcsnow mod_RFbcsnow_reg
rf_bcsnow $\alpha_\mathrm{rf}^\mathrm{BCsnow}$ W m-2 [TgC yr-1]-1  - mod_RFbcsnow_rf
p_trans $\pi_\mathrm{trans}$ - -
alpha_alb $\alpha_\mathrm{alb}$ reg_land, bio_land mod_RFlcc_alb, mod_RFlcc_flux, mod_RFlcc_cover
F_rsds $\phi_\mathrm{rsds}$ W m-2  reg_land mod_RFlcc_flux
w_warm_volc $\kappa_\mathrm{warm}^\mathrm{volc}$ - -
w_warm_bcsnow $\kappa_\mathrm{warm}^\mathrm{BCsnow}$ - mod_RFbcsnow_warmeff
w_warm_lcc $\kappa_\mathrm{warm}^\mathrm{LCC}$ - mod_RFlcc_warmeff
p_atm_CO2 $\pi_\mathrm{atm}^\mathrm{CO_2}$ - mod_Pg_radfact
p_atm_nonCO2 $\pi_\mathrm{atm}^\mathrm{noCO_2}$ - mod_Pg_radfact
p_atm_O3t $\pi_\mathrm{atm}^\mathrm{O_3t}$ - mod_Pg_radfact
p_atm_strat $\pi_\mathrm{atm}^\mathrm{strat}$ - mod_Pg_radfact
p_atm_scatter $\pi_\mathrm{atm}^\mathrm{scatter}$ - mod_Pg_radfact
p_atm_absorb $\pi_\mathrm{atm}^\mathrm{absorb}$ - mod_Pg_radfact
p_atm_cloud $\pi_\mathrm{atm}^\mathrm{cloud}$ - mod_Pg_radfact
p_atm_alb $\pi_\mathrm{atm}^\mathrm{alb}$ - mod_Pg_radfact
p_atm_solar $\pi_\mathrm{atm}^\mathrm{solar}$ - mod_Pg_radfact
lambda_0 $\lambda$ K [W m-2]-1  - mod_Tg_resp
Th_g $\frac{\tau_{T_G}}{\lambda}$ yr W m-2 K-1  - mod_Tg_resp
Th_d $\frac{\tau_{T_D}}{\lambda}$ yr W m-2 K-1  - mod_Tg_resp
th_0 $\frac{\theta}{\lambda}$ W m-2 K-1  - mod_Tg_resp
e_ohu - - -
w_clim_Tl $\omega_{T_L}$ reg_land mod_Tl_pattern, mod_Tg_resp
w_clim_To $\omega_{T_S}$ - mod_Tl_pattern, mod_Tg_resp
a_prec $\alpha_{P_G}$ mm yr-1 K-1  - mod_Pg_resp
b_prec $\beta_{P_G}$ mm yr-1 [W m-2]-1  - mod_Pg_resp
w_clim_Pl $\omega_{P_L}$ reg_land mod_Pl_pattern, mod_Pg_resp
p_ohc $\pi_\mathrm{ohc}$ - -
pH_is_Log - bool  - mod_pH_fct