-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
110 lines (80 loc) · 2.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import json
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from nltk_utils import tokenizer, stem, bag_of_words
from model import NeuralNet
with open('intents.json', 'r') as f:
intents = json.load(f)
tags = []
all_words = []
xy = []
x_train = []
y_train = []
ignore_words = ['?', '!', '.', ',']
for intent in intents['intents']:
tag = intent['tag']
tags.append(tag)
for pattern in intent['patterns']:
tokenize = tokenizer(pattern)
all_words.extend(tokenize)
xy.append( (tokenize, tag) )
all_words = [stem(w) for w in all_words if w not in ignore_words]
all_words = sorted(set(all_words))
tags = sorted(set(tags))
for (tokenized_sentence, tag) in xy:
bag = bag_of_words(tokenized_sentence, all_words)
x_train.append(bag)
label = tags.index(tag)
y_train.append(label)
x_train = np.array(x_train)
y_train = np.array(y_train)
class ChatDataset(Dataset):
def __init__(self):
self.n_samples = len(x_train)
self.x_data = x_train
self.y_data = y_train
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.n_samples
# Hyper parameters
batch_size = 8
hidden_size = 8
output_size = len(tags)
input_size = len(all_words)
learning_rate = 0.001
num_epochs = 1000
dataset = ChatDataset()
train_loader = DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=0)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = NeuralNet(input_size, hidden_size, output_size).to(device)
#loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
for (words, labels) in train_loader:
words = words.to(device)
labels = labels.to(dtype=torch.long).to(device)
#forward
outputs = model(words)
loss = criterion(outputs, labels)
#backward and optimizer step
optimizer.zero_grad() # empty the gradient
loss.backward()
optimizer.step()
if (epoch + 1) % 100 == 0:
print(f'epoch {epoch + 1}/{num_epochs}, loss={loss.item():.4f}')
print(f'final loss: loss={loss.item():.4f}')
data = {
"model_state": model.state_dict(),
"input_size": input_size,
"output_size": output_size,
"hidden_size": hidden_size,
"all_words": all_words,
"tags": tags
}
FILE = "trained_model_data.pth"
torch.save(data, FILE)
print(f"training complete. Data saved to {FILE}")