|
| 1 | +[ |
| 2 | + { |
| 3 | + "name": "Tensors", |
| 4 | + "description": [ |
| 5 | + "<p>Tensors are the core datastructure of TensorFlow.js", |
| 6 | + "They are a generalization of vectors and matrices to potentially", |
| 7 | + "higher dimensions.</p>" |
| 8 | + ], |
| 9 | + "subheadings": [ |
| 10 | + { |
| 11 | + "name": "Creation", |
| 12 | + "description": [ |
| 13 | + "<p>We have utility functions for common cases like Scalar, 1D,", |
| 14 | + "2D, 3D and 4D tensors, as well a number of functions to initialize", |
| 15 | + "tensors in ways useful for machine learning.</p>" |
| 16 | + ], |
| 17 | + "pin": [ |
| 18 | + "tensor", |
| 19 | + "scalar", |
| 20 | + "tensor1d", |
| 21 | + "tensor2d", |
| 22 | + "tensor3d", |
| 23 | + "tensor4d", |
| 24 | + "tensor5d", |
| 25 | + "tensor6d" |
| 26 | + ] |
| 27 | + }, |
| 28 | + { |
| 29 | + "name": "Classes", |
| 30 | + "description": [ |
| 31 | + "<p>", |
| 32 | + "This section shows the main Tensor related classes in TensorFlow.js and", |
| 33 | + "the methods we expose on them.", |
| 34 | + "</p>" |
| 35 | + ], |
| 36 | + "pin": [ |
| 37 | + "Tensor", |
| 38 | + "Variable", |
| 39 | + "TensorBuffer" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "name": "Transformations", |
| 44 | + "description": [ |
| 45 | + "<p>This section describes some common Tensor", |
| 46 | + "transformations for reshaping and type-casting.</p>" |
| 47 | + ] |
| 48 | + }, |
| 49 | + { |
| 50 | + "name": "Slicing and Joining", |
| 51 | + "description": [ |
| 52 | + "<p>TensorFlow.js provides several operations", |
| 53 | + "to slice or extract parts of a tensor, or join multiple", |
| 54 | + "tensors together." |
| 55 | + ] |
| 56 | + } |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "name": "Models", |
| 61 | + "description": [ |
| 62 | + "<p>Models are one of the primary abstractions used in", |
| 63 | + "TensorFlow.js Layers. Models can be trained, evaluated, and used", |
| 64 | + "for prediction. A model's state (topology, and optionally, trained", |
| 65 | + "weights) can be restored from various formats.</p>", |
| 66 | + "<p>Models are a collection of Layers, see Model Creation for", |
| 67 | + "details about how Layers can be connected.</p>" |
| 68 | + ], |
| 69 | + "subheadings": [ |
| 70 | + { |
| 71 | + "name": "Creation", |
| 72 | + "description": [ |
| 73 | + "<p>There are two primary ways of creating models.</p>", |
| 74 | + "<ul><li>Sequential — Easiest, works if the models is a", |
| 75 | + "simple stack of each layer's input resting on the top of the", |
| 76 | + "previous layer's output.</li>", |
| 77 | + "<li>Model — Offers more control if the layers need to be", |
| 78 | + "wired together in graph-like ways — multiple 'towers',", |
| 79 | + "layers that skip a layer, etc.</li></ul>" |
| 80 | + ], |
| 81 | + "pin": [ |
| 82 | + "sequential", |
| 83 | + "model" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "name": "Inputs", |
| 88 | + "description": [] |
| 89 | + }, |
| 90 | + { |
| 91 | + "name": "Loading", |
| 92 | + "description": [], |
| 93 | + "pin": [ |
| 94 | + "loadGraphModel", |
| 95 | + "loadLayersModel" |
| 96 | + ] |
| 97 | + } |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "name": "Layers", |
| 102 | + "description": [ |
| 103 | + "<p>Layers are the primary building block for ", |
| 104 | + "constructing a Model. Each layer will typically perform some", |
| 105 | + "computation to transform its input to its output.</p>", |
| 106 | + "<p>Layers will automatically take care of creating and initializing", |
| 107 | + "the various internal variables/weights they need to function.</p>" |
| 108 | + ], |
| 109 | + "subheadings": [ |
| 110 | + { |
| 111 | + "name": "Advanced Activation", |
| 112 | + "description": [] |
| 113 | + }, |
| 114 | + { |
| 115 | + "name": "Basic", |
| 116 | + "description": [] |
| 117 | + }, |
| 118 | + { |
| 119 | + "name": "Convolutional", |
| 120 | + "description": [] |
| 121 | + }, |
| 122 | + { |
| 123 | + "name": "Merge", |
| 124 | + "description": [] |
| 125 | + }, |
| 126 | + { |
| 127 | + "name": "Normalization", |
| 128 | + "description": [] |
| 129 | + }, |
| 130 | + { |
| 131 | + "name": "Pooling", |
| 132 | + "description": [] |
| 133 | + }, |
| 134 | + { |
| 135 | + "name": "Recurrent", |
| 136 | + "description": [] |
| 137 | + }, |
| 138 | + { |
| 139 | + "name": "Wrapper", |
| 140 | + "description": [] |
| 141 | + } |
| 142 | + ] |
| 143 | + }, |
| 144 | + { |
| 145 | + "name": "Operations", |
| 146 | + "description": [], |
| 147 | + "subheadings": [ |
| 148 | + { |
| 149 | + "name": "Arithmetic", |
| 150 | + "description": [ |
| 151 | + "<p>To perform mathematical computation on Tensors, we use", |
| 152 | + "operations. Tensors are immutable, so all operations always return", |
| 153 | + "new Tensors and never modify input Tensors.</p>" |
| 154 | + ], |
| 155 | + "pin": [ |
| 156 | + "add", |
| 157 | + "sub", |
| 158 | + "mul", |
| 159 | + "div" |
| 160 | + ] |
| 161 | + }, |
| 162 | + { |
| 163 | + "name": "Basic math" |
| 164 | + }, |
| 165 | + { |
| 166 | + "name": "Matrices" |
| 167 | + }, |
| 168 | + { |
| 169 | + "name": "Convolution" |
| 170 | + }, |
| 171 | + { |
| 172 | + "name": "Reduction" |
| 173 | + }, |
| 174 | + { |
| 175 | + "name": "Normalization" |
| 176 | + }, |
| 177 | + { |
| 178 | + "name": "Images" |
| 179 | + }, |
| 180 | + { |
| 181 | + "name": "RNN" |
| 182 | + }, |
| 183 | + { |
| 184 | + "name": "Logical" |
| 185 | + } |
| 186 | + ] |
| 187 | + }, |
| 188 | + { |
| 189 | + "name": "Training", |
| 190 | + "description": [ |
| 191 | + "<p>We also provide an API to do perform training, and", |
| 192 | + "compute gradients. We compute gradients eagerly, users provide a function", |
| 193 | + "that is a combination of operations and we automatically differentiate", |
| 194 | + "that function's output with respect to its inputs.", |
| 195 | + "<p>For those familiar with TensorFlow, the API we expose exactly mirrors", |
| 196 | + "the TensorFlow Eager API.", |
| 197 | + "</p>" |
| 198 | + ], |
| 199 | + "subheadings": [ |
| 200 | + { |
| 201 | + "name": "Gradients", |
| 202 | + "pin": [ |
| 203 | + "grad", |
| 204 | + "grads", |
| 205 | + "valAndGrad", |
| 206 | + "valAndGrads", |
| 207 | + "customGrad" |
| 208 | + ] |
| 209 | + }, |
| 210 | + { |
| 211 | + "name": "Optimizers", |
| 212 | + "pin": [ |
| 213 | + "sgd", |
| 214 | + "momentum", |
| 215 | + "adagrad", |
| 216 | + "adadelta" |
| 217 | + ] |
| 218 | + }, |
| 219 | + { |
| 220 | + "name": "Losses" |
| 221 | + }, |
| 222 | + { |
| 223 | + "name": "Classes" |
| 224 | + } |
| 225 | + ] |
| 226 | + }, |
| 227 | + { |
| 228 | + "name": "Performance", |
| 229 | + "description": [], |
| 230 | + "subheadings": [ |
| 231 | + { |
| 232 | + "name": "Memory", |
| 233 | + "pin": [ |
| 234 | + "tidy" |
| 235 | + ] |
| 236 | + }, |
| 237 | + { |
| 238 | + "name": "Timing", |
| 239 | + "pin": [ |
| 240 | + "time" |
| 241 | + ] |
| 242 | + } |
| 243 | + ] |
| 244 | + }, |
| 245 | + { |
| 246 | + "name": "Environment", |
| 247 | + "description": [ |
| 248 | + "<p>TensorFlow.js can run mathematical operations on", |
| 249 | + "different backends. Currently, we support WebGL and JavaScript", |
| 250 | + "CPU. By default, we choose the 'best' backend available, but", |
| 251 | + "allow users to customize their backend.</p>" |
| 252 | + ], |
| 253 | + "subheadings": [] |
| 254 | + }, |
| 255 | + { |
| 256 | + "name": "Constraints", |
| 257 | + "description": [ |
| 258 | + "<p>Constraints are added to attributes", |
| 259 | + "of a Layer (such as weights, kernels, or biases) at", |
| 260 | + "construction time to clamp, or otherwise enforce an allowed range,", |
| 261 | + "of values for different components of the Layer.</p>" |
| 262 | + ], |
| 263 | + "subheadings": [] |
| 264 | + }, |
| 265 | + { |
| 266 | + "name": "Initializers", |
| 267 | + "description": [ |
| 268 | + "<p>Initializers are used in Layers", |
| 269 | + "to establish the starting the values of weights, biases, kernels, ", |
| 270 | + "etc.</p>" |
| 271 | + ], |
| 272 | + "subheadings": [] |
| 273 | + }, |
| 274 | + { |
| 275 | + "name": "Regularizers", |
| 276 | + "description": [ |
| 277 | + "<p>Regularizers can be attached to various components", |
| 278 | + "of a Layer to add a 'scoring' function to help drive weights, or ", |
| 279 | + "other trainable values, away from excessively large values. They're", |
| 280 | + "typically used to promote a notion that a 'simpler' model is better", |
| 281 | + "than a complicated model, assuming equal performance.</p>" |
| 282 | + ], |
| 283 | + "subheadings": [] |
| 284 | + }, |
| 285 | + { |
| 286 | + "name": "Data", |
| 287 | + "description": [ |
| 288 | + "<p>TensorFlow.js Data provides simple APIs to load and parse data ", |
| 289 | + "from disk or over the web in a variety of formats, and to prepare ", |
| 290 | + "that data for use in machine learning models (e.g. via operations ", |
| 291 | + "like filter, map, shuffle, and batch)." |
| 292 | + ], |
| 293 | + "subheadings": [ |
| 294 | + { |
| 295 | + "name": "Creation" |
| 296 | + }, |
| 297 | + { |
| 298 | + "name": "Operations" |
| 299 | + }, |
| 300 | + { |
| 301 | + "name": "Classes" |
| 302 | + } |
| 303 | + ] |
| 304 | + }, |
| 305 | + { |
| 306 | + "name": "Visualization", |
| 307 | + "description": [ |
| 308 | + "<p>tfjs-vis is a companion library for TensorFlow.js that provides ", |
| 309 | + "in-browser visualization capabilities for training and understanding ", |
| 310 | + "models. <a href='/api_vis/latest/'>API docs for tfjs-vis are available here</a>" |
| 311 | + ], |
| 312 | + "subheadings": [] |
| 313 | + } |
| 314 | +] |
0 commit comments