@@ -349,7 +349,7 @@ def embedding(x,
349349 # On the backwards pass, we want to convert the gradient from
350350 # an indexed-slices to a regular tensor before sending it back to the
351351 # parameter server. This avoids excess computation on the parameter server.
352- if not tf .executing_eagerly ():
352+ if not tf .contrib . eager . in_eager_mode ():
353353 embedding_var = convert_gradient_to_tensor (embedding_var )
354354 x = dropout_no_scaling (x , 1.0 - symbol_dropout_rate )
355355 emb_x = gather (embedding_var , x , dtype )
@@ -2868,7 +2868,7 @@ def ones_matrix_band_part(rows, cols, num_lower, num_upper, out_shape=None):
28682868def reshape_like_all_dims (a , b ):
28692869 """Reshapes a to match the shape of b."""
28702870 ret = tf .reshape (a , tf .shape (b ))
2871- if not tf .executing_eagerly ():
2871+ if not tf .contrib . eager . in_eager_mode ():
28722872 ret .set_shape (b .get_shape ())
28732873 return ret
28742874
@@ -3193,7 +3193,7 @@ def should_generate_summaries():
31933193def reshape_like (a , b ):
31943194 """Reshapes a to match the shape of b in all but the last dimension."""
31953195 ret = tf .reshape (a , tf .concat ([tf .shape (b )[:- 1 ], tf .shape (a )[- 1 :]], 0 ))
3196- if not tf .executing_eagerly ():
3196+ if not tf .contrib . eager . in_eager_mode ():
31973197 ret .set_shape (b .get_shape ().as_list ()[:- 1 ] + a .get_shape ().as_list ()[- 1 :])
31983198 return ret
31993199
@@ -3205,7 +3205,7 @@ def summarize_video(video, prefix, max_outputs=1):
32053205 raise ValueError ("Assuming videos given as tensors in the format "
32063206 "[batch, time, height, width, channels] but got one "
32073207 "of shape: %s" % str (video_shape ))
3208- if tf .executing_eagerly ():
3208+ if tf .contrib . eager . in_eager_mode ():
32093209 return
32103210 if video .get_shape ().as_list ()[1 ] is None :
32113211 tf .summary .image (
0 commit comments