Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ValueError: prune_low_magnitude can only prune an object of the following types: keras.models.Sequential, keras functional model, keras.layers.Layer, list of keras.layers.Layer. You passed an object of type: Conv2D. #1172

Open
ShardulNalegave opened this issue Jan 19, 2025 · 1 comment
Labels
bug Something isn't working

Comments

@ShardulNalegave
Copy link

Describe the bug
I am trying to prune MobileNetV2 model using prune_low_magnitude but am running into the following error.

2025-01-19 17:41:03.439078: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
Loading MobileNetV2 model...
Pruning the model...
Traceback (most recent call last):
  File "/Users/esp/Projects/gen_models/mbv2_prune.py", line 89, in <module>
    full_workflow()
  File "/Users/esp/Projects/gen_models/mbv2_prune.py", line 81, in full_workflow
    pruned_model = prune_model(model)
  File "/Users/esp/Projects/gen_models/mbv2_prune.py", line 27, in prune_model
    pruned_layer = prune_low_magnitude(tf.keras.layers.Conv2D(
  File "/Users/esp/Projects/gen_models/venv/lib/python3.10/site-packages/tensorflow_model_optimization/python/core/keras/metrics.py", line 74, in inner
    raise error
  File "/Users/esp/Projects/gen_models/venv/lib/python3.10/site-packages/tensorflow_model_optimization/python/core/keras/metrics.py", line 69, in inner
    results = func(*args, **kwargs)
  File "/Users/esp/Projects/gen_models/venv/lib/python3.10/site-packages/tensorflow_model_optimization/python/core/sparsity/keras/prune.py", line 216, in prune_low_magnitude
    raise ValueError(
ValueError: `prune_low_magnitude` can only prune an object of the following types: keras.models.Sequential, keras functional model, keras.layers.Layer, list of keras.layers.Layer. You passed an object of type: Conv2D.

System information

TensorFlow version (installed from source or binary): 2.16.2

TensorFlow Model Optimization version (installed from source or binary): 0.8.0

Python version: 3.10.16

Describe the expected behavior
The layers should be pruned as Conv2D inherits Layer which as the error says is supported.

Describe the current behavior
Even though Conv2D inherits Layer which as the error says is supported, the code fails.

Code to reproduce the issue

def load_model_mobilenetv2():
    model = MobileNetV2(weights="imagenet", include_top=True, alpha=0.35, input_shape=(224, 224, 3))
    return model

def prune_model(base_model):
    pruning_schedule = PolynomialDecay(
        initial_sparsity=0.0,
        final_sparsity=0.5,
        begin_step=0,
        end_step=1000
    )
    
    pruned_model = Sequential()
    for layer in base_model.layers:
        if isinstance(layer, tf.keras.layers.Dense):
            pruned_layer = prune_low_magnitude(layer, pruning_schedule)
            pruned_model.add(pruned_layer)
        elif isinstance(layer, tf.keras.layers.Conv2D):
            pruned_layer = prune_low_magnitude(tf.keras.layers.Conv2D(
                layer.filters,
                layer.kernel_size,
                layer.strides,
                layer.padding,
                layer.data_format,
                layer.dilation_rate,
                layer.groups,
                layer.activation,
                layer.use_bias,
                layer.kernel_initializer,
                layer.bias_initializer,
                layer.kernel_regularizer,
                layer.bias_regularizer,
                layer.activity_regularizer,
                layer.kernel_constraint,
                layer.bias_constraint,
            ), pruning_schedule)
            pruned_model.add(pruned_layer)
        else:
            pruned_model.add(layer)
    
    # This doesn't work too
    # for layer in base_model.layers:
    #     if isinstance(layer, tf.keras.layers.Dense) or isinstance(layer, tf.keras.layers.Conv2D):
    #         pruned_layer = prune_low_magnitude(layer, pruning_schedule)
    #         pruned_model.add(pruned_layer)
    #     else:
    #         pruned_model.add(layer)

    pruned_model.build(input_shape=(None, 224, 224, 3))
    pruned_model.compile(
        optimizer=tf.keras.optimizers.Adam(),
        loss="categorical_crossentropy",
        metrics=["accuracy"]
    )
    return pruned_model
@ShardulNalegave ShardulNalegave added the bug Something isn't working label Jan 19, 2025
@ShardulNalegave
Copy link
Author

Looks like this is the case for anything you pass to prune_low_magnitude.
I am getting the same error for Dense layer too.

Found another similar issue has been filed on this repo:- #1167

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

1 participant