|
| 1 | +import os |
| 2 | +from datetime import datetime |
| 3 | +import traceback |
| 4 | +from queue import Queue |
| 5 | + |
| 6 | +from loguru import logger |
| 7 | +from slugify import slugify |
| 8 | +import streamlit as st |
| 9 | + |
| 10 | +from syngen.ml.worker import Worker |
| 11 | +from syngen.ml.utils import fetch_log_message, ProgressBarHandler |
| 12 | + |
| 13 | +UPLOAD_DIRECTORY = "uploaded_files" |
| 14 | +TIMESTAMP = slugify(datetime.now().strftime("%Y-%m-%d %H:%M:%S")) |
| 15 | + |
| 16 | + |
| 17 | +class StreamlitHandler: |
| 18 | + """ |
| 19 | + A class for handling the Streamlit app |
| 20 | + """ |
| 21 | + |
| 22 | + def __init__(self, uploaded_file, epochs: int, size_limit: int, print_report: bool): |
| 23 | + self.log_queue = Queue() |
| 24 | + self.progress_handler = ProgressBarHandler() |
| 25 | + self.log_error_queue = Queue() |
| 26 | + self.epochs = epochs |
| 27 | + self.size_limit = size_limit |
| 28 | + self.print_report = print_report |
| 29 | + self.file_name = uploaded_file.name |
| 30 | + self.table_name = os.path.splitext(self.file_name)[0] |
| 31 | + self.file_path = os.path.join(UPLOAD_DIRECTORY, self.file_name) |
| 32 | + self.sl_table_name = slugify(self.table_name) |
| 33 | + self.path_to_generated_data = (f"model_artifacts/tmp_store/{self.sl_table_name}/" |
| 34 | + f"merged_infer_{self.sl_table_name}.csv") |
| 35 | + self.path_to_report = (f"model_artifacts/tmp_store/{self.sl_table_name}/" |
| 36 | + f"draws/accuracy_report.html") |
| 37 | + |
| 38 | + def set_logger(self): |
| 39 | + """ |
| 40 | + Set a logger to see logs, and collect log messages |
| 41 | + with the log level - 'INFO' in a log file and stdout |
| 42 | + """ |
| 43 | + logger.add(self.file_sink, level="INFO") |
| 44 | + logger.add(self.log_sink, level="INFO") |
| 45 | + |
| 46 | + def log_sink(self, message): |
| 47 | + """ |
| 48 | + Put log messages to a log queue |
| 49 | + """ |
| 50 | + log_message = fetch_log_message(message) |
| 51 | + self.log_queue.put(log_message) |
| 52 | + |
| 53 | + def file_sink(self, message): |
| 54 | + """ |
| 55 | + Write log messages to a log file |
| 56 | + """ |
| 57 | + path_to_logs = f"model_artifacts/tmp_store/{self.sl_table_name}_{TIMESTAMP}.log" |
| 58 | + os.environ["SUCCESS_LOG_FILE"] = path_to_logs |
| 59 | + os.makedirs(os.path.dirname(path_to_logs), exist_ok=True) |
| 60 | + with open(path_to_logs, "a") as log_file: |
| 61 | + log_message = fetch_log_message(message) |
| 62 | + log_file.write(log_message + "\n") |
| 63 | + |
| 64 | + def train_model(self): |
| 65 | + """ |
| 66 | + Launch a model training |
| 67 | + """ |
| 68 | + try: |
| 69 | + self.set_logger() |
| 70 | + logger.info("Starting model training...") |
| 71 | + settings = { |
| 72 | + "source": self.file_path, |
| 73 | + "epochs": self.epochs, |
| 74 | + "row_limit": 10000, |
| 75 | + "drop_null": False, |
| 76 | + "batch_size": 32, |
| 77 | + "print_report": False |
| 78 | + } |
| 79 | + worker = Worker( |
| 80 | + table_name=self.table_name, |
| 81 | + settings=settings, |
| 82 | + metadata_path=None, |
| 83 | + log_level="INFO", |
| 84 | + type_of_process="train" |
| 85 | + ) |
| 86 | + ProgressBarHandler().set_progress(0.01) |
| 87 | + worker.launch_train() |
| 88 | + logger.info("Model training completed") |
| 89 | + except Exception: |
| 90 | + logger.error(f"Error during train: {traceback.format_exc()}") |
| 91 | + self.log_error_queue.put(f"Error during train: {traceback.format_exc()}") |
| 92 | + |
| 93 | + def infer_model(self): |
| 94 | + """ |
| 95 | + Launch a data generation |
| 96 | + """ |
| 97 | + try: |
| 98 | + logger.info("Starting data generation...") |
| 99 | + settings = { |
| 100 | + "size": self.size_limit, |
| 101 | + "batch_size": 32, |
| 102 | + "run_parallel": False, |
| 103 | + "random_seed": None, |
| 104 | + "print_report": self.print_report, |
| 105 | + "get_infer_metrics": False |
| 106 | + } |
| 107 | + worker = Worker( |
| 108 | + table_name=self.table_name, |
| 109 | + settings=settings, |
| 110 | + metadata_path=None, |
| 111 | + log_level="INFO", |
| 112 | + type_of_process="infer" |
| 113 | + ) |
| 114 | + worker.launch_infer() |
| 115 | + logger.info("Data generation completed") |
| 116 | + except Exception: |
| 117 | + logger.error(f"Error during infer: {traceback.format_exc()}") |
| 118 | + self.log_error_queue.put(f"Error during infer: {traceback.format_exc()}") |
| 119 | + |
| 120 | + def train_and_infer(self): |
| 121 | + """ |
| 122 | + Launch a model training and data generation |
| 123 | + """ |
| 124 | + self.train_model() |
| 125 | + self.infer_model() |
| 126 | + |
| 127 | + @staticmethod |
| 128 | + def generate_button(label, path_to_file, download_name): |
| 129 | + """ |
| 130 | + Generate a download button |
| 131 | + """ |
| 132 | + if os.path.exists(path_to_file): |
| 133 | + with open(path_to_file, "rb") as f: |
| 134 | + st.download_button( |
| 135 | + label, |
| 136 | + f, |
| 137 | + file_name=download_name, |
| 138 | + ) |
| 139 | + |
| 140 | + def generate_buttons(self): |
| 141 | + """ |
| 142 | + Generate download buttons for downloading artifacts |
| 143 | + """ |
| 144 | + self.generate_button( |
| 145 | + "Download generated data", |
| 146 | + self.path_to_generated_data, |
| 147 | + f"generated_data_{self.sl_table_name}.csv" |
| 148 | + ) |
| 149 | + self.generate_button( |
| 150 | + "Download logs", |
| 151 | + os.getenv("SUCCESS_LOG_FILE", ""), |
| 152 | + f"logs_{self.sl_table_name}.log" |
| 153 | + ) |
| 154 | + if self.print_report: |
| 155 | + self.generate_button( |
| 156 | + "Download report", |
| 157 | + self.path_to_report, |
| 158 | + f"accuracy_report_{self.sl_table_name}.html" |
| 159 | + ) |
0 commit comments