-
Notifications
You must be signed in to change notification settings - Fork 29
/
README.md
1916 lines (1573 loc) · 65.8 KB
/
README.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# ECMAScript Explicit Resource Management
> **NOTE:** This proposal has subsumed the [Async Explicit Resource Management](https://github.com/tc39/proposal-async-explicit-resource-management)
> proposal. This proposal repository should be used for further discussion of both sync and async of explicit resource
> management.
This proposal intends to address a common pattern in software development regarding
the lifetime and management of various resources (memory, I/O, etc.). This pattern
generally includes the allocation of a resource and the ability to explicitly
release critical resources.
For example, ECMAScript Generator Functions and Async Generator Functions expose this pattern through the
`return` method, as a means to explicitly evaluate `finally` blocks to ensure
user-defined cleanup logic is preserved:
```js
// sync generators
function * g() {
const handle = acquireFileHandle(); // critical resource
try {
...
}
finally {
handle.release(); // cleanup
}
}
const obj = g();
try {
const r = obj.next();
...
}
finally {
obj.return(); // calls finally blocks in `g`
}
```
```js
// async generators
async function * g() {
const handle = acquireStream(); // critical resource
try {
...
}
finally {
await stream.close(); // cleanup
}
}
const obj = g();
try {
const r = await obj.next();
...
}
finally {
await obj.return(); // calls finally blocks in `g`
}
```
As such, we propose the adoption of a novel syntax to simplify this common pattern:
```js
// sync disposal
function * g() {
using handle = acquireFileHandle(); // block-scoped critical resource
} // cleanup
{
using obj = g(); // block-scoped declaration
const r = obj.next();
} // calls finally blocks in `g`
```
```js
// async disposal
async function * g() {
using stream = acquireStream(); // block-scoped critical resource
...
} // cleanup
{
await using obj = g(); // block-scoped declaration
const r = await obj.next();
} // calls finally blocks in `g`
```
In addition, we propose the addition of two disposable container objects to assist
with managing multiple resources:
- `DisposableStack` — A stack-based container of disposable resources.
- `AsyncDisposableStack` — A stack-based container of asynchronously disposable resources.
## Status
**Stage:** 3 \
**Champion:** Ron Buckton (@rbuckton) \
**Last Presented:** March, 2023 ([slides](https://1drv.ms/p/s!AjgWTO11Fk-Tkodu1RydtKh2ZVafxA?e=yasS3Y),
[notes #1](https://github.com/tc39/notes/blob/main/meetings/2023-03/mar-21.md#async-explicit-resource-management),
[notes #2](https://github.com/tc39/notes/blob/main/meetings/2023-03/mar-23.md#async-explicit-resource-management-again))
_For more information see the [TC39 proposal process](https://tc39.es/process-document/)._
## Authors
- Ron Buckton (@rbuckton)
# Motivations
This proposal is motivated by a number of cases:
- Inconsistent patterns for resource management:
- ECMAScript Iterators: `iterator.return()`
- WHATWG Stream Readers: `reader.releaseLock()`
- NodeJS FileHandles: `handle.close()`
- Emscripten C++ objects handles: `Module._free(ptr) obj.delete() Module.destroy(obj)`
- Avoiding common footguns when managing resources:
```js
const reader = stream.getReader();
...
reader.releaseLock(); // Oops, should have been in a try/finally
```
- Scoping resources:
```js
const handle = ...;
try {
... // ok to use `handle`
}
finally {
handle.close();
}
// not ok to use `handle`, but still in scope
```
- Avoiding common footguns when managing multiple resources:
```js
const a = ...;
const b = ...;
try {
...
}
finally {
a.close(); // Oops, issue if `b.close()` depends on `a`.
b.close(); // Oops, `b` never reached if `a.close()` throws.
}
```
- Avoiding lengthy code when managing multiple resources correctly:
```js
// sync disposal
{ // block avoids leaking `a` or `b` to outer scope
const a = ...;
try {
const b = ...;
try {
...
}
finally {
b.close(); // ensure `b` is closed before `a` in case `b`
// depends on `a`
}
}
finally {
a.close(); // ensure `a` is closed even if `b.close()` throws
}
}
// both `a` and `b` are out of scope
```
Compared to:
```js
// avoids leaking `a` or `b` to outer scope
// ensures `b` is disposed before `a` in case `b` depends on `a`
// ensures `a` is disposed even if disposing `b` throws
using a = ..., b = ...;
...
```
```js
// async sync disposal
{ // block avoids leaking `a` or `b` to outer scope
const a = ...;
try {
const b = ...;
try {
...
}
finally {
await b.close(); // ensure `b` is closed before `a` in case `b`
// depends on `a`
}
}
finally {
await a.close(); // ensure `a` is closed even if `b.close()` throws
}
}
// both `a` and `b` are out of scope
```
Compared to:
```js
// avoids leaking `a` or `b` to outer scope
// ensures `b` is disposed before `a` in case `b` depends on `a`
// ensures `a` is disposed even if disposing `b` throws
await using a = ..., b = ...;
...
```
- Non-blocking memory/IO applications:
```js
import { ReaderWriterLock } from "...";
const lock = new ReaderWriterLock();
export async function readData() {
// wait for outstanding writer and take a read lock
using lockHandle = await lock.read();
... // any number of readers
await ...;
... // still in read lock after `await`
} // release the read lock
export async function writeData(data) {
// wait for all readers and take a write lock
using lockHandle = await lock.write();
... // only one writer
await ...;
... // still in write lock after `await`
} // release the write lock
```
- Potential for use with the [Fixed Layout Objects Proposal](https://github.com/tc39/proposal-structs) and
`shared struct`:
```js
// main.js
shared struct class SharedData {
ready = false;
processed = false;
}
const worker = new Worker('worker.js');
const m = new Atomics.Mutex();
const cv = new Atomics.ConditionVariable();
const data = new SharedData();
worker.postMessage({ m, cv, data });
// send data to worker
{
// wait until main can get a lock on 'm'
using lck = m.lock();
// mark data for worker
data.ready = true;
console.log("main is ready");
} // unlocks 'm'
// notify potentially waiting worker
cv.notifyOne();
{
// reacquire lock on 'm'
using lck = m.lock();
// release the lock on 'm' and wait for the worker to finish processing
cv.wait(m, () => data.processed);
} // unlocks 'm'
```
```js
// worker.js
onmessage = function (e) {
const { m, cv, data } = e.data;
{
// wait until worker can get a lock on 'm'
using lck = m.lock();
// release the lock on 'm' and wait until main() sends data
cv.wait(m, () => data.ready);
// after waiting we once again own the lock on 'm'
console.log("worker thread is processing data");
// send data back to main
data.processed = true;
console.log("worker thread is done");
} // unlocks 'm'
}
```
# Prior Art
<!-- Links to similar concepts in existing languages, prior proposals, etc. -->
- C#:
- [`using` statement](https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/using-statement)
- [`using` declaration](https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/proposals/csharp-8.0/using#using-declaration)
- Java: [`try`-with-resources statement](https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html)
- Python: [`with` statement](https://docs.python.org/3/reference/compound_stmts.html#the-with-statement)
# Definitions
- _Resource_ — An object with a specific lifetime, at the end of which either a lifetime-sensitive operation
should be performed or a non-garbage-collected reference (such as a file handle, socket, etc.) should be closed or
freed.
- _Resource Management_ — A process whereby "resources" are released, triggering any lifetime-sensitive operations
or freeing any related non-garbage-collected references.
- _Implicit Resource Management_ — Indicates a system whereby the lifetime of a "resource" is managed implicitly
by the runtime as part of garbage collection, such as:
- `WeakMap` keys
- `WeakSet` values
- `WeakRef` values
- `FinalizationRegistry` entries
- _Explicit Resource Management_ — Indicates a system whereby the lifetime of a "resource" is managed explicitly
by the user either **imperatively** (by directly calling a method like `Symbol.dispose`) or **declaratively** (through
a block-scoped declaration like `using`).
# Syntax
## `using` Declarations
```js
// a synchronously-disposed, block-scoped resource
using x = expr1; // resource w/ local binding
using y = expr2, z = expr4; // multiple resources
```
# Grammar
Please refer to the [specification text][Specification] for the most recent version of the grammar.
## `await using` Declarations
```js
// an asynchronously-disposed, block-scoped resource
await using x = expr1; // resource w/ local binding
await using y = expr2, z = expr4; // multiple resources
```
An `await using` declaration can appear in the following contexts:
- The top level of a _Module_ anywhere _VariableStatement_ is allowed, as long as it is not immediately nested inside
of a _CaseClause_ or _DefaultClause_.
- In the body of an async function or async generator anywhere a _VariableStatement_ is allowed, as long as it is not
immediately nested inside of a _CaseClause_ or _DefaultClause_.
- In the head of a `for-of` or `for-await-of` statement.
## `await using` in `for-of` and `for-await-of` Statements
```js
for (await using x of y) ...
for await (await using x of y) ...
```
You can use an `await using` declaration in a `for-of` or `for-await-of` statement inside of an async context to
explicitly bind each iterated value as an async disposable resource. `for-await-of` does not implicitly make a non-async
`using` declaration into an async `await using` declaration, as the `await` markers in `for-await-of` and `await using`
are explicit indicators for distinct cases: `for await` *only* indicates async iteration, while `await using` *only*
indicates async disposal. For example:
```js
// sync iteration, sync disposal
for (using x of y) ; // no implicit `await` at end of each iteration
// sync iteration, async disposal
for (await using x of y) ; // implicit `await` at end of each iteration
// async iteration, sync disposal
for await (using x of y) ; // implicit `await` at end of each iteration
// async iteration, async disposal
for await (await using x of y) ; // implicit `await` at end of each iteration
```
While there is some overlap in that the last three cases introduce some form of implicit `await` during execution, it
is intended that the presence or absence of the `await` modifier in a `using` declaration is an explicit indicator as to
whether we are expecting the iterated value to have an `@@asyncDispose` method. This distinction is in line with the
behavior of `for-of` and `for-await-of`:
```js
const iter = { [Symbol.iterator]() { return [].values(); } };
const asyncIter = { [Symbol.asyncIterator]() { return [].values(); } };
for (const x of iter) ; // ok: `iter` has @@iterator
for (const x of asyncIter) ; // throws: `asyncIter` does not have @@iterator
for await (const x of iter) ; // ok: `iter` has @@iterator (fallback)
for await (const x of asyncIter) ; // ok: `asyncIter` has @@asyncIterator
```
`using` and `await using` have the same distinction:
```js
const res = { [Symbol.dispose]() {} };
const asyncRes = { [Symbol.asyncDispose]() {} };
using x = res; // ok: `res` has @@dispose
using x = asyncRes; // throws: `asyncRes` does not have @@dispose
await using x = res; // ok: `res` has @@dispose (fallback)
await using x = asyncres; // ok: `asyncRes` has @@asyncDispose
```
This results in a matrix of behaviors based on the presence of each `await` marker:
```js
const res = { [Symbol.dispose]() {} };
const asyncRes = { [Symbol.asyncDispose]() {} };
const iter = { [Symbol.iterator]() { return [res, asyncRes].values(); } };
const asyncIter = { [Symbol.asyncIterator]() { return [res, asyncRes].values(); } };
for (using x of iter) ;
// sync iteration, sync disposal
// - `iter` has @@iterator: ok
// - `res` has @@dispose: ok
// - `asyncRes` does not have @@dispose: *error*
for (using x of asyncIter) ;
// sync iteration, sync disposal
// - `asyncIter` does not have @@iterator: *error*
for (await using x of iter) ;
// sync iteration, async disposal
// - `iter` has @@iterator: ok
// - `res` has @@dispose (fallback): ok
// - `asyncRes` has @@asyncDispose: ok
for (await using x of asyncIter) ;
// sync iteration, async disposal
// - `asyncIter` does not have @@iterator: error
for await (using x of iter) ;
// async iteration, sync disposal
// - `iter` has @@iterator (fallback): ok
// - `res` has @@dispose: ok
// - `asyncRes` does not have @@dispose: error
for await (using x of asyncIter) ;
// async iteration, sync disposal
// - `asyncIter` has @@asyncIterator: ok
// - `res` has @@dispose: ok
// - `asyncRes` does not have @@dispose: error
for await (await using x of iter) ;
// async iteration, async disposal
// - `iter` has @@iterator (fallback): ok
// - `res` has @@dispose (fallback): ok
// - `asyncRes` does has @@asyncDispose: ok
for await (await using x of asyncIter) ;
// async iteration, async disposal
// - `asyncIter` has @@asyncIterator: ok
// - `res` has @@dispose (fallback): ok
// - `asyncRes` does has @@asyncDispose: ok
```
Or, in table form:
| Syntax | Iteration | Disposal |
|:---------------------------------|:------------------------------:|:----------------------------:|
| `for (using x of y)` | `@@iterator` | `@@dispose` |
| `for (await using x of y)` | `@@iterator` | `@@asyncDispose`/`@@dispose` |
| `for await (using x of y)` | `@@asyncIterator`/`@@iterator` | `@@dispose` |
| `for await (await using x of y)` | `@@asyncIterator`/`@@iterator` | `@@asyncDispose`/`@@dispose` |
# Semantics
## `using` Declarations
### `using` Declarations with Explicit Local Bindings
```grammarkdown
UsingDeclaration :
`using` BindingList `;`
LexicalBinding :
BindingIdentifier Initializer
```
When a `using` declaration is parsed with _BindingIdentifier_ _Initializer_, the bindings created in the declaration
are tracked for disposal at the end of the containing _Block_ or _Module_ (a `using` declaration cannot be used
at the top level of a _Script_):
```js
{
... // (1)
using x = expr1;
... // (2)
}
```
The above example has similar runtime semantics as the following transposed representation:
```js
{
const $$try = { stack: [], error: undefined, hasError: false };
try {
... // (1)
const x = expr1;
if (x !== null && x !== undefined) {
const $$dispose = x[Symbol.dispose];
if (typeof $$dispose !== "function") {
throw new TypeError();
}
$$try.stack.push({ value: x, dispose: $$dispose });
}
... // (2)
}
catch ($$error) {
$$try.error = $$error;
$$try.hasError = true;
}
finally {
while ($$try.stack.length) {
const { value: $$expr, dispose: $$dispose } = $$try.stack.pop();
try {
$$dispose.call($$expr);
}
catch ($$error) {
$$try.error = $$try.hasError ? new SuppressedError($$error, $$try.error) : $$error;
$$try.hasError = true;
}
}
if ($$try.hasError) {
throw $$try.error;
}
}
}
```
If exceptions are thrown both in the block following the `using` declaration and in the call to
`[Symbol.dispose]()`, all exceptions are reported.
### `using` Declarations with Multiple Resources
A `using` declaration can mix multiple explicit bindings in the same declaration:
```js
{
...
using x = expr1, y = expr2;
...
}
```
These bindings are again used to perform resource disposal when the _Block_ or _Module_ exits, however in this case
`[Symbol.dispose]()` is invoked in the reverse order of their declaration. This is _approximately_ equivalent to the
following:
```js
{
... // (1)
using x = expr1;
using y = expr2;
... // (2)
}
```
Both of the above cases would have similar runtime semantics as the following transposed representation:
```js
{
const $$try = { stack: [], error: undefined, hasError: false };
try {
... // (1)
const x = expr1;
if (x !== null && x !== undefined) {
const $$dispose = x[Symbol.dispose];
if (typeof $$dispose !== "function") {
throw new TypeError();
}
$$try.stack.push({ value: x, dispose: $$dispose });
}
const y = expr2;
if (y !== null && y !== undefined) {
const $$dispose = y[Symbol.dispose];
if (typeof $$dispose !== "function") {
throw new TypeError();
}
$$try.stack.push({ value: y, dispose: $$dispose });
}
... // (2)
}
catch ($$error) {
$$try.error = $$error;
$$try.hasError = true;
}
finally {
while ($$try.stack.length) {
const { value: $$expr, dispose: $$dispose } = $$try.stack.pop();
try {
$$dispose.call($$expr);
}
catch ($$error) {
$$try.error = $$try.hasError ? new SuppressedError($$error, $$try.error) : $$error;
$$try.hasError = true;
}
}
if ($$try.hasError) {
throw $$try.error;
}
}
}
```
Since we must always ensure that we properly release resources, we must ensure that any abrupt completion that might
occur during binding initialization results in evaluation of the cleanup step. When there are multiple declarations in
the list, we track each resource in the order they are declared. As a result, we must release these resources in reverse
order.
### `using` Declarations and `null` or `undefined` Values
This proposal has opted to ignore `null` and `undefined` values provided to the `using` declarations. This is similar to
the behavior of `using` in C#, which also allows `null`. One primary reason for this behavior is to simplify a common
case where a resource might be optional, without requiring duplication of work or needless allocations:
```js
if (isResourceAvailable()) {
using resource = getResource();
... // (1)
resource.doSomething()
... // (2)
}
else {
// duplicate code path above
... // (1) above
... // (2) above
}
```
Compared to:
```js
using resource = isResourceAvailable() ? getResource() : undefined;
... // (1) do some work with or without resource
resource?.doSomething();
... // (2) do some other work with or without resource
```
### `using` Declarations and Values Without `[Symbol.dispose]`
If a resource does not have a callable `[Symbol.dispose]` member, a `TypeError` would be thrown **immediately** when the
resource is tracked.
### `using` Declarations in `for-of` and `for-await-of` Loops
A `using` declaration _may_ occur in the _ForDeclaration_ of a `for-of` or `for-await-of` loop:
```js
for (using x of iterateResources()) {
// use x
}
```
In this case, the value bound to `x` in each iteration will be _synchronously_ disposed at the end of each iteration.
This will not dispose resources that are not iterated, such as if iteration is terminated early due to `return`,
`break`, or `throw`.
`using` declarations _may not_ be used in in the head of a `for-in` loop.
## `await using` Declarations
### `await using` Declarations with Explicit Local Bindings
```grammarkdown
UsingDeclaration :
`using` `await` BindingList `;`
LexicalBinding :
BindingIdentifier Initializer
```
When an `await using` declaration is parsed with _BindingIdentifier_ _Initializer_, the bindings created in the
declaration are tracked for disposal at the end of the containing async function body, _Block_, or _Module_:
```js
{
... // (1)
await using x = expr1;
... // (2)
}
```
The above example has similar runtime semantics as the following transposed representation:
```js
{
const $$try = { stack: [], error: undefined, hasError: false };
try {
... // (1)
const x = expr1;
if (x !== null && x !== undefined) {
let $$dispose = x[Symbol.asyncDispose];
if (typeof $$dispose !== "function") {
$$dispose = x[Symbol.dispose];
}
if (typeof $$dispose !== "function") {
throw new TypeError();
}
$$try.stack.push({ value: x, dispose: $$dispose });
}
... // (2)
}
catch ($$error) {
$$try.error = $$error;
$$try.hasError = true;
}
finally {
while ($$try.stack.length) {
const { value: $$expr, dispose: $$dispose } = $$try.stack.pop();
try {
await $$dispose.call($$expr);
}
catch ($$error) {
$$try.error = $$try.hasError ? new SuppressedError($$error, $$try.error) : $$error;
$$try.hasError = true;
}
}
if ($$try.hasError) {
throw $$try.error;
}
}
}
```
If exceptions are thrown both in the statements following the `await using` declaration and in the call to
`[Symbol.asyncDispose]()`, all exceptions are reported.
### `await using` Declarations with Multiple Resources
An `await using` declaration can mix multiple explicit bindings in the same declaration:
```js
{
...
await using x = expr1, y = expr2;
...
}
```
These bindings are again used to perform resource disposal when the _Block_ or _Module_ exits, however in this case each
resource's `[Symbol.asyncDispose]()` is invoked in the reverse order of their declaration. This is _approximately_
equivalent to the following:
```js
{
... // (1)
await using x = expr1;
await using y = expr2;
... // (2)
}
```
Both of the above cases would have similar runtime semantics as the following transposed representation:
```js
{
const $$try = { stack: [], error: undefined, hasError: false };
try {
... // (1)
const x = expr1;
if (x !== null && x !== undefined) {
let $$dispose = x[Symbol.asyncDispose];
if (typeof $$dispose !== "function") {
$$dispose = x[Symbol.dispose];
}
if (typeof $$dispose !== "function") {
throw new TypeError();
}
$$try.stack.push({ value: x, dispose: $$dispose });
}
const y = expr2;
if (y !== null && y !== undefined) {
let $$dispose = y[Symbol.asyncDispose];
if (typeof $$dispose !== "function") {
$$dispose = y[Symbol.dispose];
}
if (typeof $$dispose !== "function") {
throw new TypeError();
}
$$try.stack.push({ value: y, dispose: $$dispose });
}
... // (2)
}
catch ($$error) {
$$try.error = $$error;
$$try.hasError = true;
}
finally {
while ($$try.stack.length) {
const { value: $$expr, dispose: $$dispose } = $$try.stack.pop();
try {
await $$dispose.call($$expr);
}
catch ($$error) {
$$try.error = $$try.hasError ? new SuppressedError($$error, $$try.error) : $$error;
$$try.hasError = true;
}
}
if ($$try.hasError) {
throw $$try.error;
}
}
}
```
Since we must always ensure that we properly release resources, we must ensure that any abrupt completion that might
occur during binding initialization results in evaluation of the cleanup step. When there are multiple declarations in
the list, we track each resource in the order they are declared. As a result, we must release these resources in reverse
order.
### `await using` Declarations and `null` or `undefined` Values
This proposal has opted to ignore `null` and `undefined` values provided to `await using` declarations. This is similar
to the behavior of `using` in the original [Explicit Resource Management][using] proposal, which also
allows `null` and `undefined`, as well as C#, which also allows `null`,. One primary reason for this behavior is to
simplify a common case where a resource might be optional, without requiring duplication of work or needless
allocations:
```js
if (isResourceAvailable()) {
await using resource = getResource();
... // (1)
resource.doSomething()
... // (2)
}
else {
// duplicate code path above
... // (1) above
... // (2) above
}
```
Compared to:
```js
await using resource = isResourceAvailable() ? getResource() : undefined;
... // (1) do some work with or without resource
resource?.doSomething();
... // (2) do some other work with or without resource
```
### `await using` Declarations and Values Without `[Symbol.asyncDispose]` or `[Symbol.dispose]`
If a resource does not have a callable `[Symbol.asyncDispose]` or `[Symbol.asyncDispose]` member, a `TypeError` would be thrown **immediately** when the resource is tracked.
### `await using` Declarations in `for-of` and `for-await-of` Loops
An `await using` declaration _may_ occur in the _ForDeclaration_ of a `for-await-of` loop:
```js
for await (await using x of iterateResources()) {
// use x
}
```
In this case, the value bound to `x` in each iteration will be _asynchronously_ disposed at the end of each iteration.
This will not dispose resources that are not iterated, such as if iteration is terminated early due to `return`,
`break`, or `throw`.
`await using` declarations _may not_ be used in in the head of a `for-of` or `for-in` loop.
### Implicit Async Interleaving Points ("implicit `await`")
The `await using` syntax introduces an implicit async interleaving point (i.e., an implicit `await`) whenever control
flow exits an async function body, _Block_, or _Module_ containing an `await using` declaration. This means that two
statements that currently execute in the same microtask, such as:
```js
async function f() {
{
a();
} // exit block
b(); // same microtask as call to `a()`
}
```
will instead execute in different microtasks if an `await using` declaration is introduced:
```js
async function f() {
{
await using x = ...;
a();
} // exit block, implicit `await`
b(); // different microtask from call to `a()`.
}
```
It is important that such an implicit interleaving point be adequately indicated within the syntax. We believe that
the presence of `await using` within such a block is an adequate indicator, since it should be fairly easy to recognize
a _Block_ containing an `await using` statement in well-formatted code.
It is also feasible for editors to use features such as syntax highlighting, editor decorations, and inlay hints to
further highlight such transitions, without needing to specify additional syntax.
Further discussion around the `await using` syntax and how it pertains to implicit async interleaving points can be
found in [#1](https://github.com/tc39/proposal-async-explicit-resource-management/issues/1).
# Examples
The following show examples of using this proposal with various APIs, assuming those APIs adopted this proposal.
### WHATWG Streams API
```js
{
using reader = stream.getReader();
const { value, done } = reader.read();
} // 'reader' is disposed
```
### NodeJS FileHandle
```js
{
using f1 = await fs.promises.open(s1, constants.O_RDONLY),
f2 = await fs.promises.open(s2, constants.O_WRONLY);
const buffer = Buffer.alloc(4092);
const { bytesRead } = await f1.read(buffer);
await f2.write(buffer, 0, bytesRead);
} // 'f2' is disposed, then 'f1' is disposed
```
### NodeJS Streams
```js
{
await using writable = ...;
writable.write(...);
} // 'writable.end()' is called and its result is awaited
```
### Logging and tracing
```js
// audit privileged function call entry and exit
function privilegedActivity() {
using activity = auditLog.startActivity("privilegedActivity"); // log activity start
...
} // log activity end
```
### Async Coordination
```js
import { Semaphore } from "...";
const sem = new Semaphore(1); // allow one participant at a time
export async function tryUpdate(record) {
using lck = await sem.wait(); // asynchronously block until we are the sole participant
...
} // synchronously release semaphore and notify the next participant
```
### Three-Phase Commit Transactions
```js
// roll back transaction if either action fails
async function transfer(account1, account2) {
await using tx = transactionManager.startTransaction(account1, account2);
await account1.debit(amount);
await account2.credit(amount);
// mark transaction success if we reach this point
tx.succeeded = true;
} // await transaction commit or rollback
```
### Shared Structs
**main_thread.js**
```js
// main_thread.js
shared struct Data {
mut;
cv;
ready = 0;
processed = 0;
// ...
}
const data = Data();
data.mut = Atomics.Mutex();
data.cv = Atomics.ConditionVariable();
// start two workers
startWorker1(data);
startWorker2(data);
```
**worker1.js**
```js
const data = ...;
const { mut, cv } = data;
{
// lock mutex
using lck = Atomics.Mutex.lock(mut);