-
Notifications
You must be signed in to change notification settings - Fork 4
/
train_vae.py
939 lines (815 loc) · 36.1 KB
/
train_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Script to fine-tune Stable Video Diffusion."""
import argparse
import glob
import random
import logging
import math
import os
import torchvision
import shutil
from pathlib import Path
from urllib.parse import urlparse
import accelerate
import numpy as np
import PIL
from PIL import Image
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import RandomSampler
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from packaging import version
from tqdm.auto import tqdm
import diffusers
from diffusers import AutoencoderKLTemporalDecoder
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version, deprecate, is_wandb_available, load_image
from diffusers import AutoencoderKL
import open3d as o3d
from src.dataset import UpsamplerDataset
from pytorch3d.ops import knn_points
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.24.0.dev0")
logger = get_logger(__name__, log_level="INFO")
def normal_similarity_loss(points, k=20):
"""
Calculate the loss function for normal similarity, which encourages neighboring points to have similar normals.
:param points: (B, N, 3) torch.Tensor, point cloud data
:param k: int, number of neighboring points
:return: torch.Tensor, normal similarity loss
"""
B, N, _ = points.shape
# Perform kNN search using PyTorch3D
knn = knn_points(points, points, K=k, return_nn=True)
neighbors = knn.knn
centroid = torch.mean(neighbors, dim=2, keepdim=True) # B x N x 1 x 3
neighbors_centered = neighbors - centroid # B x N x k x 3
cov_matrix = torch.matmul(neighbors_centered.transpose(3, 2), neighbors_centered) # B x N x 3 x 3
eigvals, eigvecs = torch.linalg.eigh(cov_matrix) # B x N x 3 x 3
normals = eigvecs[:, :, :, 0] # B x N x 3
# 计算相邻点法向量相似性损失
knn = knn_points(points, points, K=10, return_nn=True)
loss = compute_similarity_loss(normals, knn.idx)
return loss
def compute_similarity_loss(normals, knn_idx):
"""
Calculate the loss function for normal similarity, which encourages neighboring points to have similar normals.
:param normals: (B, N, 3) torch.Tensor, normal vectors
:param knn_idx: (B, N, k) torch.Tensor, k-nearest neighbor indices
:return: torch.Tensor, similarity loss
"""
B, N, k = knn_idx.shape
# Get the normals of neighboring points
knn_idx = knn_idx.view(B, -1) # Flatten the indices
neighbor_normals = normals.gather(1, knn_idx.unsqueeze(-1).expand(-1, -1, 3)) # Get neighbor normals
neighbor_normals = neighbor_normals.view(B, N, k, 3) # Reshape back to neighbor normals shape
# Expand normals
normals_expanded = normals.unsqueeze(2).expand(-1, -1, k, -1) # B x N x k x 3
# Calculate cosine similarity
cos_sim = F.cosine_similarity(normals_expanded, neighbor_normals, dim=-1) # B x N x k
# Similarity loss, 1 minus cosine similarity is used as the loss since higher cosine similarity means more similarity
similarity_loss = 1 - cos_sim.abs()
return similarity_loss.mean()
def get_rays(directions, c2w):
# Rotate ray directions from camera coordinate to the world coordinate
rays_d = directions @ c2w[:3, :3].T # (H, W, 3)
rays_d = rays_d / (np.linalg.norm(rays_d, axis=-1, keepdims=True) + 1e-8)
# The origin of all rays is the camera origin in world coordinate
rays_o = np.broadcast_to(c2w[:3, 3], rays_d.shape) # (H, W, 3)
return rays_o, rays_d
def xray_to_pcd(GenDepths, GenNormals, GenColors):
camera_angle_x = 0.8575560450553894
image_width = GenDepths.shape[-1]
image_height = GenDepths.shape[-2]
fx = 0.5 * image_width / np.tan(0.5 * camera_angle_x)
rays_screen_coords = np.mgrid[0:image_height, 0:image_width].reshape(
2, image_height * image_width).T # [h, w, 2]
grid = rays_screen_coords.reshape(image_height, image_width, 2)
cx = image_width / 2.0
cy = image_height / 2.0
i, j = grid[..., 1], grid[..., 0]
directions = np.stack([(i-cx)/fx, -(j-cy)/fx, -np.ones_like(i)], -1) # (H, W, 3)
c2w = np.eye(4).astype(np.float32)
rays_origins, ray_directions = get_rays(directions, c2w)
rays_origins = rays_origins[None].repeat(GenDepths.shape[0], 0)
ray_directions = ray_directions[None].repeat(GenDepths.shape[0], 0)
GenDepths = GenDepths.transpose(0, 2, 3, 1)
GenNormals = GenNormals.transpose(0, 2, 3, 1)
GenColors = GenColors.transpose(0, 2, 3, 1)
valid_index = GenDepths[..., 0] > 0
rays_origins = rays_origins[valid_index]
ray_directions = ray_directions[valid_index]
GenDepths = GenDepths[valid_index]
normals = GenNormals[valid_index]
colors = GenColors[valid_index]
xyz = rays_origins + ray_directions * GenDepths
return xyz, normals, colors
def get_rays_torch(directions, c2w):
# Rotate ray directions from camera coordinate to the world coordinate
rays_d = torch.matmul(directions, c2w[:3, :3].T) # (H, W, 3)
rays_d = rays_d / (torch.norm(rays_d, dim=-1, keepdim=True) + 1e-8)
# The origin of all rays is the camera origin in world coordinate
rays_o = c2w[:3, 3].expand_as(rays_d) # (H, W, 3)
return rays_o, rays_d
def xray_to_pcd_torch(GenDepths, GenHits, GenNormals=None):
camera_angle_x = 0.8575560450553894
image_width = GenDepths.shape[-1]
image_height = GenDepths.shape[-2]
fx = 0.5 * image_width / math.tan(0.5 * camera_angle_x)
rays_screen_coords = torch.stack(torch.meshgrid(
torch.arange(image_height, dtype=torch.float32),
torch.arange(image_width, dtype=torch.float32)
), -1).reshape(-1, 2) # [h, w, 2]
grid = rays_screen_coords.reshape(image_height, image_width, 2)
cx = image_width / 2.0
cy = image_height / 2.0
i, j = grid[..., 1], grid[..., 0]
directions = torch.stack([(i - cx) / fx, -(j - cy) / fx, -torch.ones_like(i)], -1) # (H, W, 3)
c2w = torch.eye(4, dtype=torch.float32)
rays_origins, ray_directions = get_rays_torch(directions, c2w)
rays_origins = rays_origins.unsqueeze(0).expand(GenDepths.shape[0], -1, -1, -1).to(GenDepths.device)
ray_directions = ray_directions.unsqueeze(0).expand(GenDepths.shape[0], -1, -1, -1).to(GenDepths.device)
GenDepths = GenDepths.permute(0, 2, 3, 1)
GenHits = GenHits.permute(0, 2, 3, 1)
valid_index = GenHits[..., 0] > 0
rays_origins = rays_origins[valid_index]
ray_directions = ray_directions[valid_index]
GenDepths = GenDepths[valid_index]
xyz = rays_origins + ray_directions * GenDepths
if GenNormals is not None:
GenNormals = GenNormals.permute(0, 2, 3, 1)
normals = GenNormals[valid_index]
return xyz, normals
else:
return xyz
def parse_args():
parser = argparse.ArgumentParser(
description="Script to train Stable Diffusion XL for InstructPix2Pix."
)
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=False,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--validation_prompt",
type=str,
default=None,
help="A prompt that is sampled during training for inference.",
)
parser.add_argument(
"--num_frames",
type=int,
default=16,
)
parser.add_argument(
"--width",
type=int,
default=512,
)
parser.add_argument(
"--height",
type=int,
default=512,
)
parser.add_argument(
"--num_validation_images",
type=int,
default=1,
help="Number of images that should be generated during validation with `validation_prompt`.",
)
parser.add_argument(
"--validation_steps",
type=int,
default=500,
help=(
"Run fine-tuning validation every X epochs. The validation process consists of running the text/image prompt"
" multiple times: `args.num_validation_images`."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="./outputs",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--seed", type=int, default=None, help="A seed for reproducible training."
)
parser.add_argument(
"--per_gpu_batch_size",
type=int,
default=1,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps",
type=int,
default=500,
help="Number of steps for the warmup in the lr scheduler.",
)
parser.add_argument(
"--conditioning_dropout_prob",
type=float,
default=0.1,
help="Conditioning dropout probability. Drops out the conditionings (image and edit prompt) used in training InstructPix2Pix. See section 3.2.1 in the paper: https://arxiv.org/abs/2211.09800.",
)
parser.add_argument(
"--use_8bit_adam",
action="store_true",
help="Whether or not to use 8-bit Adam from bitsandbytes.",
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--use_ema", action="store_true", help="Whether to use EMA model."
)
parser.add_argument(
"--non_ema_revision",
type=str,
default=None,
required=False,
help=(
"Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or"
" remote repository specified with --pretrained_model_name_or_path."
),
)
parser.add_argument(
"--num_workers",
type=int,
default=8,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument(
"--adam_beta1",
type=float,
default=0.9,
help="The beta1 parameter for the Adam optimizer.",
)
parser.add_argument(
"--adam_beta2",
type=float,
default=0.999,
help="The beta2 parameter for the Adam optimizer.",
)
parser.add_argument(
"--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use."
)
parser.add_argument(
"--adam_epsilon",
type=float,
default=1e-08,
help="Epsilon value for the Adam optimizer",
)
parser.add_argument(
"--max_grad_norm", default=1.0, type=float, help="Max gradient norm."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the model to the Hub.",
)
parser.add_argument(
"--hub_token",
type=str,
default=None,
help="The token to use to push to the Model Hub.",
)
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--local_rank",
type=int,
default=-1,
help="For distributed training: local_rank",
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=2,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention",
action="store_true",
help="Whether or not to use xformers.",
)
parser.add_argument(
"--pretrain_model",
type=str,
default=None,
help="use weight for unet block",
)
parser.add_argument(
"--rank",
type=int,
default=128,
help=("The dimension of the LoRA update matrices."),
)
parser.add_argument(
"--data_root",
type=str,
default="",
help=("the data root path."),
)
parser.add_argument(
"--near",
type=float,
default=0.6,
help=("the nearest distance"),
)
parser.add_argument(
"--far",
type=float,
default=1.8,
help=("the farest distance"),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
# default to using the same revision for the non-ema model if not specified
if args.non_ema_revision is None:
args.non_ema_revision = args.revision
return args
def download_image(url):
original_image = (
lambda image_url_or_path: load_image(image_url_or_path)
if urlparse(image_url_or_path).scheme
else PIL.Image.open(image_url_or_path).convert("RGB")
)(url)
return original_image
def main():
args = parse_args()
if args.non_ema_revision is not None:
deprecate(
"non_ema_revision!=None",
"0.15.0",
message=(
"Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to"
" use `--variant=non_ema` instead."
),
)
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(
project_dir=args.output_dir, logging_dir=logging_dir)
# ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
# kwargs_handlers=[ddp_kwargs]
)
global_step = 0
first_epoch = 0
if args.report_to == "wandb":
if not is_wandb_available():
raise ImportError(
"Make sure to install wandb if you want to use it for logging during training.")
import wandb
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.push_to_hub:
repo_id = create_repo(
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
).repo_id
if args.pretrain_model is not None:
vae = AutoencoderKLTemporalDecoder.from_pretrained(
args.pretrain_model, subfolder="vae", revision=args.revision)
global_step = int(args.pretrain_model.split("-")[-1])
first_epoch = 0
else:
vae = AutoencoderKLTemporalDecoder.from_config("src/xray_vae.json")
vae.requires_grad_(True)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
# if args.use_ema:
# ema_vae.save_pretrained(os.path.join(output_dir, "vae_ema"))
vae = models[0]
vae.save_pretrained(os.path.join(output_dir, "vae"))
def load_model_hook(models, input_dir):
# if args.use_ema:
# load_model = EMAModel.from_pretrained(os.path.join(input_dir, "vae_ema"), AutoencoderKL)
# ema_vae.load_state_dict(load_model.state_dict())
# ema_vae.to(accelerator.device)
# del load_model
vae = models[0]
# load diffusers style into model
load_model = AutoencoderKLTemporalDecoder.from_pretrained(input_dir, subfolder="vae")
vae.register_to_config(**load_model.config)
vae.load_state_dict(load_model.state_dict())
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps *
args.per_gpu_batch_size * accelerator.num_processes
)
# Initialize the optimizer
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
)
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
optimizer = optimizer_cls(
vae.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# DataLoaders creation:
args.global_batch_size = args.per_gpu_batch_size * accelerator.num_processes
train_dataset = UpsamplerDataset(args.data_root, args.height, args.num_frames, near=args.near, far=args.far, phase="train")
train_dataset[0]
val_dataset = UpsamplerDataset(args.data_root, args.height, args.num_frames, near=args.near, far=args.far, phase="val")
sampler = RandomSampler(train_dataset)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
sampler=sampler,
batch_size=args.per_gpu_batch_size,
num_workers=args.num_workers,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
)
# Prepare everything with our `accelerator`.
vae, vae.encoder, vae.decoder, optimizer, lr_scheduler, train_dataloader = accelerator.prepare(
vae, vae.encoder, vae.decoder, optimizer, lr_scheduler, train_dataloader
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(
args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("X-Ray", config=vars(args))
# Train!
total_batch_size = args.per_gpu_batch_size * \
accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(
f" Instantaneous batch size per device = {args.per_gpu_batch_size}")
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(
f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
first_epoch = global_step // num_update_steps_per_epoch
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, args.max_train_steps),
disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
progress_bar.update(global_step)
for epoch in range(first_epoch, args.num_train_epochs):
vae.train()
train_loss = 0.0
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(vae):
xray = batch["xray"].to(weight_dtype).to(
accelerator.device, non_blocking=True
)
# save and conditional_pixel_values as images.
if global_step % 100 == 0 and accelerator.is_main_process:
os.makedirs(os.path.join(args.output_dir, "samples"), exist_ok=True)
torchvision.utils.save_image(xray[0, :, 0:1], os.path.join(args.output_dir, "samples", "depths_high.png"), normalize=True, nrow=4)
torchvision.utils.save_image(xray[0, :, 1:4], os.path.join(args.output_dir, "samples", "normals_high.png"), normalize=True, nrow=4)
torchvision.utils.save_image(xray[0, :, 4:7], os.path.join(args.output_dir, "samples", "colors_high.png"), normalize=True, nrow=4)
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
xray_input = xray.flatten(0, 1)
if isinstance(vae, torch.nn.parallel.DistributedDataParallel):
posterior = vae.module.encode(xray_input).latent_dist
else:
posterior = vae.encode(xray_input).latent_dist
z = posterior.sample() # Not mode()
# if vae is dype of DistributedDataParallel
if isinstance(vae, torch.nn.parallel.DistributedDataParallel):
model_pred = vae.module.decode(z, num_frames=args.num_frames).sample
else:
model_pred = vae.decode(z, num_frames=args.num_frames).sample
model_pred = model_pred.reshape(-1, args.num_frames, *model_pred.shape[1:])
model_pred = model_pred.float()
xray = xray.float()
H = (xray[:, :, -1:] > 0.0).detach().expand(-1, -1, 7, -1, -1)
hit_loss = F.binary_cross_entropy_with_logits(model_pred[:, :, -1:], xray[:, :, -1:] * 0.5 + 0.5)
surface_loss = F.mse_loss(model_pred[:, :, :-1][H], xray[:, :, :-1][H])
kl_loss = 1e-6 * posterior.kl().mean()
# pred normalization
GenDepths = (model_pred[:, :, 0:1] * 0.5 + 0.5) * (args.far - args.near) + args.near
GenHits = (model_pred[:, :, -1:] > 0).float().detach()
GenDepths[GenHits == 0] = 0
GenDepths[GenDepths <= args.near] = 0
GenDepths[GenDepths >= args.far] = 0
GenDepths = GenDepths.reshape(-1, 1, args.height, args.width)
GenHits = GenHits.reshape(-1, 1, args.height, args.width)
Genpts = xray_to_pcd_torch(GenDepths, GenHits)
normal_loss = 0.001 * normal_similarity_loss(Genpts[None])
loss = hit_loss + surface_loss + kl_loss + normal_loss
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(
loss.repeat(args.per_gpu_batch_size)).mean()
train_loss += avg_loss.item() / args.gradient_accumulation_steps
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(vae.parameters(), args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
accelerator.log({"train_loss": train_loss,
"hit_loss": hit_loss,
"surface_loss": surface_loss,
"kl_loss": kl_loss,
"normal_loss": normal_loss}, step=global_step)
train_loss = 0.0
if accelerator.is_main_process:
# save checkpoints!
if global_step % args.checkpointing_steps == 0:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None:
checkpoints = os.listdir(args.output_dir)
checkpoints = [
d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(
checkpoints, key=lambda x: int(x.split("-")[1]))
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(
checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(
f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(
args.output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(
args.output_dir, f"checkpoint-{global_step}")
# accelerator.unwrap_model(vae).save_pretrained(save_path)
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
# sample images!
if (
(global_step % args.validation_steps == 0)
):
logger.info(
f"Running validation... \n Generating {args.num_validation_images} videos."
)
# run inference
val_save_dir = os.path.join(
args.output_dir, "validation_images")
if not os.path.exists(val_save_dir):
os.makedirs(val_save_dir)
with torch.no_grad():
val_image_paths = val_dataset.xray_paths[:args.num_validation_images]
for val_img_idx in range(args.num_validation_images):
xray = val_dataset[val_img_idx]["xray"].to(accelerator.device, dtype=weight_dtype)[None]
xray_input = xray.flatten(0, 1)
model_pred = vae(xray_input, num_frames=args.num_frames).sample
outputs = model_pred.reshape(-1, args.num_frames, *model_pred.shape[1:])[0]
# save the generated images
outputs = outputs.clip(-1, 1)
GenDepths = (outputs[:, 0:1] * 0.5 + 0.5) * (args.far - args.near) + args.near
GenHits = (outputs[:, 7:8] > 0).float()
GenDepths[GenHits == 0] = 0
GenDepths[GenDepths <= args.near] = 0
GenDepths[GenDepths >= args.far] = 0
GenNormals = F.normalize(outputs[:, 1:4], dim=1)
GenNormals[GenHits.repeat(1, 3, 1, 1) == 0] = 0
GenColors = outputs[:, 4:7] * 0.5 + 0.5
GenColors[GenHits.repeat(1, 3, 1, 1) == 0] = 0
GenDepths = GenDepths.cpu().numpy()
GenNormals = GenNormals.cpu().numpy()
GenColors = GenColors.cpu().numpy()
gen_pts, gen_normals, gen_colors = xray_to_pcd(GenDepths, GenNormals, GenColors)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(gen_pts)
pcd.normals = o3d.utility.Vector3dVector(gen_normals)
pcd.colors = o3d.utility.Vector3dVector(gen_colors)
o3d.io.write_point_cloud(f"{val_save_dir}/step_{global_step}_val_img_{val_img_idx}_prd.ply", pcd)
logs = {"step_loss": loss.detach().item(
), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
global_step += 1
if global_step >= args.max_train_steps:
break
# Create the pipeline using the trained modules and save it.
accelerator.wait_for_everyone()
if accelerator.is_main_process:
vae = accelerator.unwrap_model(vae)
vae.save_pretrained(args.output_dir)
if args.push_to_hub:
upload_folder(
repo_id=repo_id,
folder_path=args.output_dir,
commit_message="End of training",
ignore_patterns=["step_*", "epoch_*"],
)
accelerator.end_training()
if __name__ == "__main__":
main()