-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathagent.py
234 lines (194 loc) · 8.49 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import numpy as np
import random
from collections import namedtuple, deque
# Importing the model
from dqn import DQN
import torch
import torch.optim as optim
DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
from skimage.transform import resize as imresize # preserves single-pixel info _unlike_ img = img[::2,::2]
prepro = lambda img: imresize(img[35:195].mean(2), (80,80)).astype(np.float32).reshape(1,80,80)/255.
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, action_size, buffer_size, batch_size, seed):
"""Initialize a ReplayBuffer object.
Params
======
action_size (int): dimension of each action
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
seed (int): random seed
"""
self.action_size = action_size
self.memory = deque(maxlen=buffer_size)
self.batch_size = batch_size
self.experiences = namedtuple(
"Experience",
field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(seed)
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experiences(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
"""Randomly sample a batch of experiences from memory"""
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.cat([e.state for e in experiences if e is not None])
actions = torch.from_numpy(
np.vstack([e.action for e in experiences
if e is not None])).long().to(DEVICE)
rewards = torch.from_numpy(
np.vstack([e.reward for e in experiences
if e is not None])).float().to(DEVICE)
next_states = torch.cat(
[e.next_state for e in experiences if e is not None])
dones = torch.from_numpy(
np.vstack([e.done for e in experiences
if e is not None]).astype(np.uint8)).float().to(DEVICE)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)
class DQNAgent():
"""Interacts with and learns form the environment."""
def __init__(self,
state_size,
action_size,
seed,
lr=1e-3,
gamma=0.99,
tau=1e-3,
buffer_size=int(1e5),
batch_size=64,
update_every=100):
"""Initialize an Agent object.
Params
=======
state_size (int): dimension of each state
action_size (int): dimension of each action
seed (int): random seed
"""
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(seed)
self.batch_size = batch_size
self.update_every = update_every
self.gamma = gamma
self.tau = tau
# Q- Network
self.qnetwork_local = DQN(state_size, action_size, seed).to(DEVICE)
self.qnetwork_target = DQN(state_size, action_size, seed).to(DEVICE)
self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=lr)
# Replay memory
self.memory = ReplayBuffer(action_size, buffer_size, batch_size, seed)
# Initialize time step (for updating every update_every steps)
self.t_step = 0
def preprocess_state(self, state):
"""
preprocess gym images before storing them or passing them through the network.
- from rgb to grayscale
- normalize
- crop
- permute (h, w, c) to (c, h, w) as pytorch expects
- to tensor
"""
# transofrm image to grayscale
# def rgb2gray(rgb):
# return np.dot(rgb[..., :3],
# [0.2989, 0.5870, 0.1140])[..., np.newaxis] / 255
#
# state = rgb2gray(s.copy())
# # create tensor crop and permute image
# state = torch.from_numpy(state[15:200, 30:125, :].transpose(
# 2, 0, 1)).float().unsqueeze(0).to(DEVICE)
state = torch.from_numpy(prepro(state)).to(DEVICE)
return state
def step(self, state_, action, reward, next_state_, done):
state = self.preprocess_state(state_.copy())
next_state = self.preprocess_state(next_state_.copy())
# Save experience in replay memory
self.memory.add(state, action, reward, next_state, done)
# Learn every self.update_every time steps.
self.t_step = (self.t_step + 1) % self.update_every
if self.t_step == 0:
# If enough samples are available in memory, get radom subset and learn
if len(self.memory) > self.batch_size:
experience = self.memory.sample()
self.learn(experience)
def act(self, state, eps=0):
"""Returns action for given state as per current policy
Params
=======
state (array_like): current state
eps (float): epsilon, for epsilon-greedy action selection
"""
# def rgb2gray(rgb):
# """transofrm rgb image to grayscale"""
# return np.dot(rgb[..., :3],
# [0.2989, 0.5870, 0.1140])[..., np.newaxis]
#
# state = rgb2gray(state)
# # create tensor, crop, permute image's channels and send to DEVICE
# state = torch.from_numpy(state[15:200, 30:125, :].transpose(
# 2, 0, 1)).float().unsqueeze(0).to(DEVICE)
# print(type(state.shape))
if state.shape == (1, 80, 80):
# print('here')
state = torch.from_numpy(state).float().to(DEVICE)
# print(state.size())
# print(state[0, 0, 0], type(state[0, 0, 0]))
else:
state = torch.from_numpy(prepro(state)).to(DEVICE)
# print(state.size())
# print(state[0, 0, 0], type(state[0, 0, 0]))
# freeze the q network to make predictions
self.qnetwork_local.eval()
with torch.no_grad():
action_values = self.qnetwork_local(state)
# unfreeze the q network to continue the training
self.qnetwork_local.train()
# Epsilon -greedy action selction
if random.random() > eps:
return action_values.cpu()
# return np.argmax(action_values.cpu().data.numpy())
else:
return random.choice(np.arange(self.action_size))
def learn(self, experiences):
"""Update value parameters using given batch of experience tuples.
Params
=======
experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples
self.gamma (float): discount factor
"""
states, actions, rewards, next_states, dones = experiences
# TODO: compute and minimize the loss
criterion = torch.nn.MSELoss()
self.qnetwork_local.train()
self.qnetwork_target.eval()
# shape of output from the model (batch_size,action_dim) = (64,4)
predicted_targets = self.qnetwork_local(states).gather(1, actions)
with torch.no_grad():
labels_next = self.qnetwork_target(next_states).detach().max(
1)[0].unsqueeze(1)
# .detach() -> Returns a new Tensor, detached from the current graph.
labels = rewards + (self.gamma * labels_next * (1 - dones))
loss = criterion(predicted_targets, labels).to(DEVICE)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# ------------------- update target network ------------------- #
self.hard_update()
# def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
=======
local model (PyTorch model): weights will be copied from
target model (PyTorch model): weights will be copied to
tau (float): interpolation parameter
"""
# for target_param, local_param in zip(target_model.parameters(),
# local_model.parameters()):
# target_param.data.copy_(tau * local_param.data + (1 - tau) * target_param.data)
def hard_update(self):
self.qnetwork_target.load_state_dict(self.qnetwork_local.state_dict())