-
Notifications
You must be signed in to change notification settings - Fork 1
/
11-p-mnist-lenet.py
52 lines (41 loc) · 1.54 KB
/
11-p-mnist-lenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import pandas as pd
from random import sample
import tensorflow as tf
from keras import callbacks, layers, models
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
my_index = sample(range(60000), 6000)
x_train = x_train[my_index, :, :]
y_train = y_train[my_index]
x_train = x_train / 255
x_test = x_test / 255
x_train2d = x_train.reshape(-1, 28, 28, 1)
x_test2d = x_test.reshape(-1, 28, 28, 1)
my_model = models.Sequential()
my_model.add(layers.Conv2D(filters=20, kernel_size=5, activation='relu',
input_shape=(28, 28, 1)))
my_model.add(layers.MaxPooling2D(pool_size=2, strides=2))
my_model.add(layers.Conv2D(filters=20, kernel_size=5, activation='relu'))
my_model.add(layers.MaxPooling2D(pool_size=2, strides=2))
my_model.add(layers.Dropout(rate=0.25))
my_model.add(layers.Flatten())
my_model.add(layers.Dense(500, activation='relu'))
my_model.add(layers.Dropout(rate=0.5))
my_model.add(layers.Dense(10, activation='softmax'))
my_model.compile(loss='sparse_categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
my_cb = callbacks.EarlyStopping(patience=5,
restore_best_weights=True)
my_history = my_model.fit(
x=x_train2d,
y=y_train,
validation_split=0.2,
batch_size=128,
epochs=20,
callbacks=[my_cb],
verbose=0)
tmp = pd.DataFrame(my_history.history)
tmp.plot(xlabel='epoch', style='o-')
import matplotlib.pyplot as plt
plt.savefig('11-p-mnist-lenet.pdf')
print(my_model.evaluate(x=x_test2d, y=y_test))