-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun_manager.py
267 lines (232 loc) · 9.97 KB
/
run_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import time
from utils import *
import apex
class RunConfig:
def __init__(self, dataset, test_batch_size, local_rank, world_size):
self.dataset = dataset
self.test_batch_size = test_batch_size
self._data_provider = None
self.local_rank = local_rank
self.world_size = world_size
self.print_frequency = 1
@property
def config(self):
config = {}
for key in self.__dict__:
if not key.startswith('_'):
config[key] = self.__dict__[key]
return config
def copy(self):
return RunConfig(**self.config)
@property
def data_config(self):
raise NotImplementedError
@property
def data_provider(self):
if self._data_provider is None:
if self.dataset == 'imagenet':
from data_providers.imagenet import ImagenetDataProvider
self._data_provider = ImagenetDataProvider(**self.data_config)
elif self.dataset == 'cifar10':
from data_providers.cifar10 import CifarDataProvider
self._data_provider = CifarDataProvider(**self.data_config)
else:
raise ValueError('do not support: %s' % self.dataset)
return self._data_provider
@data_provider.setter
def data_provider(self, val):
self._data_provider = val
@property
def train_loader(self):
return self.data_provider.train
@property
def valid_loader(self):
return self.data_provider.valid
@property
def test_loader(self):
return self.data_provider.test
class RunManager:
def __init__(self, path, net, run_config: RunConfig, out_log=True):
self.path = path
self.net = net
self.run_config = run_config
self.out_log = out_log
self.device = torch.device('cuda')
self._logs_path, self._save_path = None, None
self.best_acc = 0
self.start_epoch = 0
self.net = apex.parallel.convert_syncbn_model(nn.DataParallel(self.net)).cuda()
self.print_net_info()
self.criterion = nn.CrossEntropyLoss()
cudnn.benchmark = True
""" save path and log path """
@property
def save_path(self):
if self._save_path is None:
save_path = os.path.join(self.path, 'checkpoint')
os.makedirs(save_path, exist_ok=True)
self._save_path = save_path
return self._save_path
@property
def logs_path(self):
if self._logs_path is None:
logs_path = os.path.join(self.path, 'logs')
os.makedirs(logs_path, exist_ok=True)
self._logs_path = logs_path
return self._logs_path
def print_net_info(self):
# parameters
self.total_params = count_parameters(self.net)
self.gpu_latency = self.get_gpu_latency()
if self.out_log:
print('Total training params: %.2fM' % (self.total_params / 1e6))
net_info = {
'param': '%.2fM' % (self.total_params / 1e6),
'gpu latency': '%.2fms' % (self.gpu_latency),
}
with open('%s/net_info.txt' % self.logs_path, 'w') as fout:
fout.write(json.dumps(net_info, indent=4) + '\n')
def save_model(self, checkpoint=None, is_best=False, model_name=None):
if checkpoint is None:
checkpoint = {'state_dict': self.net.state_dict()}
if model_name is None:
model_name = 'checkpoint.pth.tar'
checkpoint['dataset'] = self.run_config.dataset # add `dataset` info to the checkpoint
latest_fname = os.path.join(self.save_path, 'latest.txt')
model_path = os.path.join(self.save_path, model_name)
with open(latest_fname, 'w') as fout:
fout.write(model_path + '\n')
torch.save(checkpoint, model_path)
if is_best:
best_path = os.path.join(self.save_path, 'model_best.pth.tar')
torch.save({'state_dict': checkpoint['state_dict']}, best_path)
def load_model(self, model_fname=None):
latest_fname = os.path.join(self.save_path, 'latest.txt')
if model_fname is None and os.path.exists(latest_fname):
with open(latest_fname, 'r') as fin:
model_fname = fin.readline()
if model_fname[-1] == '\n':
model_fname = model_fname[:-1]
if model_fname is None or not os.path.exists(model_fname):
model_fname = '%s/checkpoint.pth.tar' % self.save_path
with open(latest_fname, 'w') as fout:
fout.write(model_fname + '\n')
if self.out_log:
print("=> loading checkpoint '{}'".format(model_fname))
if torch.cuda.is_available():
checkpoint = torch.load(model_fname)
else:
checkpoint = torch.load(model_fname, map_location='cpu')
self.net.load_state_dict(checkpoint['state_dict'])
# set new manual seed
new_manual_seed = int(time.time())
torch.manual_seed(new_manual_seed)
torch.cuda.manual_seed_all(new_manual_seed)
np.random.seed(new_manual_seed)
if 'epoch' in checkpoint:
self.start_epoch = checkpoint['epoch'] + 1
if 'best_acc' in checkpoint:
self.best_acc = checkpoint['best_acc']
if self.out_log:
print("=> loaded checkpoint '{}'".format(model_fname))
def save_config(self, print_info=True):
""" dump run_config and net_config to the model_folder """
os.makedirs(self.path, exist_ok=True)
net_save_path = os.path.join(self.path, 'net.config')
json.dump(self.net.module.config, open(net_save_path, 'w'), indent=4)
if print_info:
print('Network configs dump to %s' % net_save_path)
run_save_path = os.path.join(self.path, 'run.config')
json.dump(self.run_config.config, open(run_save_path, 'w'), indent=4)
if print_info:
print('Run configs dump to %s' % run_save_path)
""" train and test """
def write_log(self, log_str, prefix, should_print=True):
""" prefix: valid, train, test """
if prefix in ['valid', 'test']:
with open(os.path.join(self.logs_path, 'valid_console.txt'), 'a') as fout:
fout.write(log_str + '\n')
fout.flush()
if prefix in ['valid', 'test', 'train']:
with open(os.path.join(self.logs_path, 'train_console.txt'), 'a') as fout:
if prefix in ['valid', 'test']:
fout.write('=' * 10)
fout.write(log_str + '\n')
fout.flush()
if should_print:
print(log_str)
def validate(self, is_test=True, net=None, use_train_mode=False, return_top5=False):
if self.run_config.dataset == 'imagenet':
n_dataloader = 50000 // (self.run_config.test_batch_size * self.run_config.world_size) + 1
elif self.run_config.dataset == 'cifar10':
n_dataloader = 10000 // (self.run_config.test_batch_size * self.run_config.world_size) + 1
if is_test:
data_loader = self.run_config.test_loader
else:
data_loader = self.run_config.valid_loader
if net is None:
net = self.net
if use_train_mode:
net.train()
else:
net.eval()
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
# noinspection PyUnresolvedReferences
with torch.no_grad():
for i, data in enumerate(data_loader):
if self.run_config.dataset == 'imagenet':
images, labels = data[0]["data"].cuda(async=True), data[0]["label"].squeeze().long().cuda(
async=True)
elif self.run_config.dataset == 'cifar10':
images, labels = data[0].cuda(async=True), data[1].cuda(async=True)
# compute output
output = net(images)
loss = self.criterion(output, labels)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
losses.update(loss, images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % self.run_config.print_frequency == 0 or i + 1 == n_dataloader:
if is_test:
prefix = 'Test'
else:
prefix = 'Valid'
test_log = prefix + ': [{0}/{1}]\t' \
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' \
'Loss {loss.val:.4f} ({loss.avg:.4f})\t' \
'Top-1 acc {top1.val:.3f} ({top1.avg:.3f})'. \
format(i, n_dataloader - 1, batch_time=batch_time, loss=losses, top1=top1)
if return_top5:
test_log += '\tTop-5 acc {top5.val:.3f} ({top5.avg:.3f})'.format(top5=top5)
print(test_log)
if return_top5:
return losses.avg, top1.avg, top5.avg
else:
return losses.avg, top1.avg
def get_gpu_latency(self):
self.net.eval()
latency = AverageMeter()
for i in range(100):
if self.run_config.dataset == 'imagenet':
x = torch.randn(8, 3, 224, 224, device=self.device)
elif self.run_config.dataset == 'cifar10':
x = torch.randn(8, 3, 32, 32, device=self.device)
with torch.no_grad():
start = time.time()
y = self.net(x)
end = time.time()
if i > 49:
latency.update((end - start) * 1000, 1)
return latency.avg