-
Notifications
You must be signed in to change notification settings - Fork 611
/
Copy pathrandom_samples.py
executable file
·54 lines (46 loc) · 2.43 KB
/
random_samples.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from config import get_arguments
from SinGAN.manipulate import *
from SinGAN.training import *
from SinGAN.imresize import imresize
import SinGAN.functions as functions
if __name__ == '__main__':
parser = get_arguments()
parser.add_argument('--input_dir', help='input image dir', default='Input/Images')
parser.add_argument('--input_name', help='input image name', required=True)
parser.add_argument('--mode', help='random_samples | random_samples_arbitrary_sizes', default='train', required=True)
# for random_samples:
parser.add_argument('--gen_start_scale', type=int, help='generation start scale', default=0)
# for random_samples_arbitrary_sizes:
parser.add_argument('--scale_h', type=float, help='horizontal resize factor for random samples', default=1.5)
parser.add_argument('--scale_v', type=float, help='vertical resize factor for random samples', default=1)
opt = parser.parse_args()
opt = functions.post_config(opt)
Gs = []
Zs = []
reals = []
NoiseAmp = []
dir2save = functions.generate_dir2save(opt)
if dir2save is None:
print('task does not exist')
elif (os.path.exists(dir2save)):
if opt.mode == 'random_samples':
print('random samples for image %s, start scale=%d, already exist' % (opt.input_name, opt.gen_start_scale))
elif opt.mode == 'random_samples_arbitrary_sizes':
print('random samples for image %s at size: scale_h=%f, scale_v=%f, already exist' % (opt.input_name, opt.scale_h, opt.scale_v))
else:
try:
os.makedirs(dir2save)
except OSError:
pass
if opt.mode == 'random_samples':
real = functions.read_image(opt)
functions.adjust_scales2image(real, opt)
Gs, Zs, reals, NoiseAmp = functions.load_trained_pyramid(opt)
in_s = functions.generate_in2coarsest(reals,1,1,opt)
SinGAN_generate(Gs, Zs, reals, NoiseAmp, opt, gen_start_scale=opt.gen_start_scale)
elif opt.mode == 'random_samples_arbitrary_sizes':
real = functions.read_image(opt)
functions.adjust_scales2image(real, opt)
Gs, Zs, reals, NoiseAmp = functions.load_trained_pyramid(opt)
in_s = functions.generate_in2coarsest(reals,opt.scale_v,opt.scale_h,opt)
SinGAN_generate(Gs, Zs, reals, NoiseAmp, opt, in_s, scale_v=opt.scale_v, scale_h=opt.scale_h)