@@ -546,8 +546,8 @@ def run_learning_pipeline(
546
546
547
547
"""
548
548
549
- view_viz = inference_params .get ("_view_viz " , False )
550
- delete_viz = inference_params .get ("_delete_viz " , False )
549
+ save_viz = inference_params .get ("_save_viz " , False )
550
+ keep_viz = inference_params .get ("_keep_viz " , False )
551
551
552
552
if "movenet" in inference_params ["_pipeline" ]:
553
553
trained_job_paths = [inference_params ["_pipeline" ]]
@@ -560,8 +560,8 @@ def run_learning_pipeline(
560
560
config_info_list = config_info_list ,
561
561
inference_params = inference_params ,
562
562
gui = True ,
563
- view_viz = view_viz ,
564
- delete_viz = delete_viz ,
563
+ save_viz = save_viz ,
564
+ keep_viz = keep_viz ,
565
565
)
566
566
567
567
# Check that all the models were trained
@@ -589,8 +589,8 @@ def run_gui_training(
589
589
config_info_list : List [ConfigFileInfo ],
590
590
inference_params : Dict [str , Any ],
591
591
gui : bool = True ,
592
- view_viz : bool = False ,
593
- delete_viz : bool = True ,
592
+ save_viz : bool = False ,
593
+ keep_viz : bool = False ,
594
594
) -> Dict [Text , Text ]:
595
595
"""
596
596
Runs training for each training job.
@@ -599,8 +599,8 @@ def run_gui_training(
599
599
labels: Labels object from which we'll get training data.
600
600
config_info_list: List of ConfigFileInfo with configs for training.
601
601
gui: Whether to show gui windows and process gui events.
602
- view_viz : Whether to save visualizations from training.
603
- delete_viz : Whether to delete prediction visualizations after training.
602
+ save_viz : Whether to save visualizations from training.
603
+ keep_viz : Whether to keep prediction visualization images after training.
604
604
605
605
Returns:
606
606
Dictionary, keys are head name, values are path to trained config.
@@ -667,7 +667,7 @@ def run_gui_training(
667
667
win .reset (what = str (model_type ), config = job )
668
668
win .setWindowTitle (f"Training Model - { str (model_type )} " )
669
669
win .set_message (f"Preparing to run training..." )
670
- if view_viz :
670
+ if save_viz :
671
671
viz_window = QtImageDirectoryWidget .make_training_vizualizer (
672
672
job .outputs .run_path
673
673
)
@@ -689,8 +689,8 @@ def waiting():
689
689
labels_filename = labels_filename ,
690
690
video_paths = video_path_list ,
691
691
waiting_callback = waiting ,
692
- view_viz = view_viz ,
693
- delete_viz = delete_viz ,
692
+ save_viz = save_viz ,
693
+ keep_viz = keep_viz ,
694
694
)
695
695
696
696
if ret == "success" :
@@ -832,8 +832,8 @@ def train_subprocess(
832
832
inference_params : Dict [str , Any ],
833
833
video_paths : Optional [List [Text ]] = None ,
834
834
waiting_callback : Optional [Callable ] = None ,
835
- view_viz : bool = False ,
836
- delete_viz : bool = True ,
835
+ save_viz : bool = False ,
836
+ keep_viz : bool = False ,
837
837
):
838
838
"""Runs training inside subprocess."""
839
839
run_path = job_config .outputs .run_path
@@ -860,10 +860,10 @@ def train_subprocess(
860
860
str (inference_params ["publish_port" ]),
861
861
]
862
862
863
- if view_viz :
864
- cli_args .append ("--view_viz " )
865
- if delete_viz :
866
- cli_args .append ("--delete_viz " )
863
+ if save_viz :
864
+ cli_args .append ("--save_viz " )
865
+ if keep_viz :
866
+ cli_args .append ("--keep_viz " )
867
867
868
868
# Use cli arg since cli ignores setting in config
869
869
if job_config .outputs .tensorboard .write_logs :
0 commit comments