-
Notifications
You must be signed in to change notification settings - Fork 12
/
main.py
executable file
·112 lines (82 loc) · 4.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from SphereGAN import SphereGAN
import argparse
from utils import *
"""parsing and configuration"""
def parse_args():
desc = "Tensorflow implementation of SphereGAN"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--phase', type=str, default='train', help='train or test ?')
parser.add_argument('--dataset', type=str, default='celebA', help='[mnist / cifar10 / custom_dataset]')
parser.add_argument('--epoch', type=int, default=10, help='The number of epochs to run')
parser.add_argument('--iteration', type=int, default=10000, help='The number of training iterations')
parser.add_argument('--batch_size', type=int, default=64, help='The size of batch per gpu')
parser.add_argument('--ch', type=int, default=256, help='base channel number per layer')
parser.add_argument('--print_freq', type=int, default=1000, help='The number of image_print_freqy')
parser.add_argument('--save_freq', type=int, default=10000, help='The number of ckpt_save_freq')
parser.add_argument('--g_lr', type=float, default=0.0001, help='learning rate for generator')
parser.add_argument('--d_lr', type=float, default=0.0001, help='learning rate for discriminator')
parser.add_argument('--beta1', type=float, default=0.0, help='beta1 for Adam optimizer')
parser.add_argument('--beta2', type=float, default=0.9, help='beta2 for Adam optimizer')
parser.add_argument('--z_dim', type=int, default=128, help='Dimension of noise vector')
parser.add_argument('--moment', type=int, default=3, help='Moment distance')
parser.add_argument('--sn', type=str2bool, default=False, help='using spectral norm')
parser.add_argument('--gan_type', type=str, default='sphere', help='[gan / lsgan / wgan-gp / wgan-lp / dragan / hinge / sphere]')
parser.add_argument('--ld', type=float, default=10.0, help='The gradient penalty lambda')
parser.add_argument('--n_critic', type=int, default=1, help='The number of critic')
parser.add_argument('--img_size', type=int, default=64, help='The size of image')
parser.add_argument('--sample_num', type=int, default=64, help='The number of sample images')
parser.add_argument('--test_num', type=int, default=10, help='The number of images generated by the test')
parser.add_argument('--checkpoint_dir', type=str, default='checkpoint',
help='Directory name to save the checkpoints')
parser.add_argument('--result_dir', type=str, default='results',
help='Directory name to save the generated images')
parser.add_argument('--log_dir', type=str, default='logs',
help='Directory name to save training logs')
parser.add_argument('--sample_dir', type=str, default='samples',
help='Directory name to save the samples on training')
return check_args(parser.parse_args())
"""checking arguments"""
def check_args(args):
# --checkpoint_dir
check_folder(args.checkpoint_dir)
# --result_dir
check_folder(args.result_dir)
# --result_dir
check_folder(args.log_dir)
# --sample_dir
check_folder(args.sample_dir)
# --epoch
try:
assert args.epoch >= 1
except:
print('number of epochs must be larger than or equal to one')
# --batch_size
try:
assert args.batch_size >= 1
except:
print('batch size must be larger than or equal to one')
return args
"""main"""
def main():
# parse arguments
args = parse_args()
if args is None:
exit()
# open session
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
gan = SphereGAN(sess, args)
# build graph
gan.build_model()
# show network architecture
show_all_variables()
if args.phase == 'train' :
# launch the graph in a session
gan.train()
# visualize learned generator
gan.visualize_results(args.epoch - 1)
print(" [*] Training finished!")
if args.phase == 'test' :
gan.test()
print(" [*] Test finished!")
if __name__ == '__main__':
main()