-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathloss.py
53 lines (36 loc) · 1.49 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
import torch.nn as nn
import torch.nn.functional as F
class betweenLoss(nn.Module):
def __init__(self, gamma=[1,1,1,1,1,1], loss=nn.L1Loss()):
super(betweenLoss, self).__init__()
self.gamma = gamma
self.loss = loss
def forward(self, outputs, targets):
assert len(outputs)
assert len(outputs) == len(targets)
length = len(outputs)
res = sum([self.gamma[i]*self.loss(outputs[i], targets[i]) for i in range(length)])
return res
def CrossEntropy(outputs, targets):
log_softmax_outputs = F.log_softmax(outputs, dim=1)
softmax_targets = F.softmax(targets, dim=1)
return -(log_softmax_outputs*softmax_targets).sum(dim=1).mean()
class discriminatorLoss(nn.Module):
def __init__(self, models, loss=nn.BCEWithLogitsLoss()):
super(discriminatorLoss, self).__init__()
self.models = models
self.loss = loss
def forward(self, outputs, targets):
inputs = [torch.cat((i,j),0) for i, j in zip(outputs, targets)]
inputs = torch.cat(inputs, 1)
batch_size = inputs.size(0)
target = torch.FloatTensor([[1, 0] for _ in range(batch_size//2)] + [[0, 1] for _ in range(batch_size//2)])
target = target.to(inputs[0].device)
output = self.models(inputs)
res = self.loss(output, target)
return res
class discriminatorFakeLoss(nn.Module):
def forward(self, outputs, targets):
res = (0*outputs[0]).sum()
return res