-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathimagenet.py
73 lines (61 loc) · 2.81 KB
/
imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
"""Dataset class for loading imagenet data."""
import os
from torch.utils import data as data_utils
from torchvision import datasets as torch_datasets
from torchvision import transforms
from utils_FKD import RandomResizedCrop_FKD,RandomHorizontalFlip_FKD,ImageFolder_FKD,Compose_FKD
from torchvision.transforms import InterpolationMode
def get_train_loader(imagenet_path, batch_size, num_workers, image_size):
train_dataset = ImageNet(imagenet_path, image_size, is_train=True)
return data_utils.DataLoader(
train_dataset, shuffle=True, batch_size=batch_size, pin_memory=True,
num_workers=num_workers)
def get_train_loader_FKD(imagenet_path, batch_size, num_workers, image_size, num_crops, softlabel_path):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = ImageFolder_FKD(
num_crops=num_crops,
softlabel_path=softlabel_path,
root=os.path.join(imagenet_path, 'train'),
transform=Compose_FKD(transforms=[
RandomResizedCrop_FKD(size=224,
interpolation='bilinear'),
RandomHorizontalFlip_FKD(),
transforms.ToTensor(),
normalize,
]))
return data_utils.DataLoader(
train_dataset, shuffle=True, batch_size=batch_size, pin_memory=True,
num_workers=num_workers)
def get_val_loader(imagenet_path, batch_size, num_workers, image_size):
val_dataset = ImageNet(imagenet_path, image_size, is_train=False)
return data_utils.DataLoader(
val_dataset, shuffle=False, batch_size=batch_size, pin_memory=True,
num_workers=num_workers)
class ImageNet(torch_datasets.ImageFolder):
"""Dataset class for ImageNet dataset.
Arguments:
root_dir (str): Path to the dataset root directory, which must contain
train/ and val/ directories.
is_train (bool): Whether to read training or validation images.
"""
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]
def __init__(self, root_dir, im_size, is_train):
if is_train:
root_dir = os.path.join(root_dir, 'train')
transform = transforms.Compose([
transforms.RandomResizedCrop(im_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(ImageNet.MEAN, ImageNet.STD),
])
else:
root_dir = os.path.join(root_dir, 'val')
transform = transforms.Compose([
transforms.Resize(int(256/224*im_size)),
transforms.CenterCrop(im_size),
transforms.ToTensor(),
transforms.Normalize(ImageNet.MEAN, ImageNet.STD),
])
super().__init__(root_dir, transform=transform)