-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathFKD_train.py
296 lines (241 loc) · 12 KB
/
FKD_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#!/usr/bin/env python3
"""Script to train a model through soft labels on ImageNet's train set."""
import argparse
import logging
import pprint
import os
import sys
import time
import math
import numpy as np
import torch
from torch import nn
from loss import discriminatorLoss
import imagenet
from models import model_factory
from models import discriminator
import opts
import test
import utils
from utils_FKD import Recover_soft_label
def parse_args(argv):
"""Parse arguments @argv and return the flags needed for training."""
parser = argparse.ArgumentParser(description=__doc__, allow_abbrev=False)
group = parser.add_argument_group('General Options')
opts.add_general_flags(group)
group = parser.add_argument_group('Dataset Options')
opts.add_dataset_flags(group)
group = parser.add_argument_group('Model Options')
opts.add_model_flags(group)
group = parser.add_argument_group('Soft Label Options')
opts.add_teacher_flags(group)
group = parser.add_argument_group('Training Options')
opts.add_training_flags(group)
group = parser.add_argument_group('CutMix Training Options')
opts.add_cutmix_training_flags(group)
args = parser.parse_args(argv)
return args
class LearningRateRegime:
"""Encapsulates the learning rate regime for training a model.
Args:
@intervals (list): A list of triples (start, end, lr). The intervals
are inclusive (for start <= epoch <= end, lr will be used). The
start of each interval must be right after the end of its previous
interval.
"""
def __init__(self, regime):
if len(regime) % 3 != 0:
raise ValueError("Regime length should be devisible by 3.")
intervals = list(zip(regime[0::3], regime[1::3], regime[2::3]))
self._validate_intervals(intervals)
self.intervals = intervals
self.num_epochs = intervals[-1][1]
@classmethod
def _validate_intervals(cls, intervals):
if type(intervals) is not list:
raise TypeError("Intervals must be a list of triples.")
elif len(intervals) == 0:
raise ValueError("Intervals must be a non empty list.")
elif intervals[0][0] != 1:
raise ValueError("Intervals must start from 1: {}".format(intervals))
elif any(end < start for (start, end, lr) in intervals):
raise ValueError("End of intervals must be greater or equal than their"
" start: {}".format(intervals))
elif any(intervals[i][1] + 1 != intervals[i + 1][0]
for i in range(len(intervals) - 1)):
raise ValueError("Start of each each interval must be the end of its "
"previous interval plus one: {}".format(intervals))
def get_lr(self, epoch):
for (start, end, lr) in self.intervals:
if start <= epoch <= end:
return lr
raise ValueError("Invalid epoch {} for regime {!r}".format(
epoch, self.intervals))
def _set_learning_rate(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def adjust_learning_rate(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
lr = args.lr
if args.cos: # cosine lr schedule
lr *= 0.5 * (1. + math.cos(math.pi * epoch / args.epochs))
else: # stepwise lr schedule
for milestone in args.schedule:
lr *= 0.1 if epoch >= milestone else 1.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def _get_learning_rate(optimizer):
return max(param_group['lr'] for param_group in optimizer.param_groups)
def train_for_one_epoch(model, g_loss, discriminator_loss, train_loader, optimizer, epoch_number, args):
model.train()
g_loss.train()
data_time_meter = utils.AverageMeter()
batch_time_meter = utils.AverageMeter()
g_loss_meter = utils.AverageMeter(recent=100)
d_loss_meter = utils.AverageMeter(recent=100)
top1_meter = utils.AverageMeter(recent=100)
top5_meter = utils.AverageMeter(recent=100)
timestamp = time.time()
for i, (images, labels, soft_labels) in enumerate(train_loader):
batch_size = args.batch_size
# Record data time
data_time_meter.update(time.time() - timestamp)
images = torch.cat(images, dim=0)
soft_labels = torch.cat(soft_labels, dim=0)
labels = torch.cat(labels, dim=0)
if args.soft_label_type == 'ori':
soft_labels = soft_labels.cuda()
else:
soft_labels = Recover_soft_label(soft_labels, args.soft_label_type, args.num_classes)
soft_labels = soft_labels.cuda()
if utils.is_model_cuda(model):
images = images.cuda()
labels = labels.cuda()
if args.w_cutmix == True:
r = np.random.rand(1)
if args.beta > 0 and r < args.cutmix_prob:
# generate mixed sample
lam = np.random.beta(args.beta, args.beta)
rand_index = torch.randperm(images.size()[0]).cuda()
target_a = soft_labels
target_b = soft_labels[rand_index]
bbx1, bby1, bbx2, bby2 = utils.rand_bbox(images.size(), lam)
images[:, :, bbx1:bbx2, bby1:bby2] = images[rand_index, :, bbx1:bbx2, bby1:bby2]
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (images.size()[-1] * images.size()[-2]))
# Forward pass, backward pass, and update parameters.
output = model(images)
# output, soft_label, soft_no_softmax = outputs
if args.w_cutmix == True:
g_loss_output1 = g_loss((output, target_a), labels)
g_loss_output2 = g_loss((output, target_b), labels)
else:
g_loss_output = g_loss((output, soft_labels), labels)
if args.use_discriminator_loss:
# Our stored label is "after softmax", this is slightly different from original MEAL V2
# that used probibilaties "before softmax" for the discriminator.
output_softmax = nn.functional.softmax(output)
if args.w_cutmix == True:
d_loss_value = discriminator_loss([output_softmax], [target_a]) * lam + discriminator_loss([output_softmax], [target_b]) * (1 - lam)
else:
d_loss_value = discriminator_loss([output_softmax], [soft_labels])
# Sometimes loss function returns a modified version of the output,
# which must be used to compute the model accuracy.
if args.w_cutmix == True:
if isinstance(g_loss_output1, tuple):
g_loss_value1, output1 = g_loss_output1
g_loss_value2, output2 = g_loss_output2
g_loss_value = g_loss_value1 * lam + g_loss_value2 * (1 - lam)
else:
g_loss_value = g_loss_output1 * lam + g_loss_output2 * (1 - lam)
else:
if isinstance(g_loss_output, tuple):
g_loss_value, output = g_loss_output
else:
g_loss_value = g_loss_output
if args.use_discriminator_loss:
loss_value = g_loss_value + d_loss_value
else:
loss_value = g_loss_value
loss_value.backward()
# Update parameters and reset gradients.
optimizer.step()
optimizer.zero_grad()
# Record loss and model accuracy.
g_loss_meter.update(g_loss_value.item(), batch_size)
d_loss_meter.update(d_loss_value.item(), batch_size)
top1, top5 = utils.topk_accuracy(output, labels, recalls=(1, 5))
top1_meter.update(top1, batch_size)
top5_meter.update(top5, batch_size)
# Record batch time
batch_time_meter.update(time.time() - timestamp)
timestamp = time.time()
if i%20 == 0:
logging.info(
'Epoch: [{epoch}][{batch}/{epoch_size}]\t'
'Time {batch_time.value:.2f} ({batch_time.average:.2f}) '
'Data {data_time.value:.2f} ({data_time.average:.2f}) '
'G_Loss {g_loss.value:.3f} {{{g_loss.average:.3f}, {g_loss.average_recent:.3f}}} '
'D_Loss {d_loss.value:.3f} {{{d_loss.average:.3f}, {d_loss.average_recent:.3f}}} '
'Top-1 {top1.value:.2f} {{{top1.average:.2f}, {top1.average_recent:.2f}}} '
'Top-5 {top5.value:.2f} {{{top5.average:.2f}, {top5.average_recent:.2f}}} '
'LR {lr:.5f}'.format(
epoch=epoch_number, batch=i + 1, epoch_size=len(train_loader),
batch_time=batch_time_meter, data_time=data_time_meter,
g_loss=g_loss_meter, d_loss=d_loss_meter, top1=top1_meter, top5=top5_meter,
lr=_get_learning_rate(optimizer)))
# Log the overall train stats
logging.info(
'Epoch: [{epoch}] -- TRAINING SUMMARY\t'
'Time {batch_time.sum:.2f} '
'Data {data_time.sum:.2f} '
'G_Loss {g_loss.average:.3f} '
'D_Loss {d_loss.average:.3f} '
'Top-1 {top1.average:.2f} '
'Top-5 {top5.average:.2f} '.format(
epoch=epoch_number, batch_time=batch_time_meter, data_time=data_time_meter,
g_loss=g_loss_meter, d_loss=d_loss_meter, top1=top1_meter, top5=top5_meter))
def save_checkpoint(checkpoints_dir, model, optimizer, epoch):
model_state_file = os.path.join(checkpoints_dir, 'model_state_{:02}.pytar'.format(epoch))
optim_state_file = os.path.join(checkpoints_dir, 'optim_state_{:02}.pytar'.format(epoch))
torch.save(model.state_dict(), model_state_file)
torch.save(optimizer.state_dict(), optim_state_file)
def create_optimizer(model, discriminator_parameters, momentum=0.9, weight_decay=0):
# Get model parameters that require a gradient.
parameters = [{'params': model.parameters()}, discriminator_parameters]
optimizer = torch.optim.SGD(parameters, lr=0,
momentum=momentum, weight_decay=weight_decay)
return optimizer
def create_discriminator_criterion(args):
d = discriminator.Discriminator(outputs_size=1000, K=8).cuda()
d = torch.nn.DataParallel(d)
update_parameters = {'params': d.parameters(), "lr": args.d_lr}
discriminators_criterion = discriminatorLoss(d).cuda()
if len(args.gpus) > 1:
discriminators_criterion = torch.nn.DataParallel(discriminators_criterion, device_ids=args.gpus)
return discriminators_criterion, update_parameters
def main(argv):
"""Run the training script with command line arguments @argv."""
args = parse_args(argv)
utils.general_setup(args.save, args.gpus)
logging.info("Arguments parsed.\n{}".format(pprint.pformat(vars(args))))
# convert to TRUE number of loading-images since we use multiple crops from the same image within a minbatch
args.batch_size = math.ceil(args.batch_size / args.num_crops)
# Create the train and the validation data loaders.
train_loader = imagenet.get_train_loader_FKD(args.imagenet, args.batch_size,
args.num_workers, args.image_size, args.num_crops, args.softlabel_path)
val_loader = imagenet.get_val_loader(args.imagenet, args.batch_size,
args.num_workers, args.image_size)
# Create model with optional teachers.
model, loss = model_factory.create_model(
args.model, args.student_state_file, args.gpus, args.teacher_model,
args.teacher_state_file, True)
logging.info("Model:\n{}".format(model))
discriminator_loss, update_parameters = create_discriminator_criterion(args)
optimizer = create_optimizer(model, update_parameters, args.momentum, args.weight_decay)
for epoch in range(args.start_epoch, args.epochs, args.num_crops):
adjust_learning_rate(optimizer, epoch, args)
train_for_one_epoch(model, loss, discriminator_loss, train_loader, optimizer, epoch, args)
test.test_for_one_epoch(model, loss, val_loader, epoch)
save_checkpoint(args.save, model, optimizer, epoch)
if __name__ == '__main__':
main(sys.argv[1:])