-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
209 lines (166 loc) · 7.12 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# For relative import
import os
import sys
PROJ_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(PROJ_DIR)
print(PROJ_DIR)
import argparse
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch.optim import Adam
import torch.optim as optim
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning import LightningDataModule, LightningModule, Trainer
from pytorch_lightning.loggers import WandbLogger
import wandb
from models.MSTGCN import MSTGCN_submodule
from models.fusiongraph import FusionGraphModel
from datasets.air import *
from util import *
parser = argparse.ArgumentParser()
args = parser.parse_args()
gpu_num = 0 # set the GPU number of your server.
os.environ['WANDB_MODE'] = 'offline' # select one from ['online','offline']
hyperparameter_defaults = dict(
server=dict(
gpu_id=0,
),
graph=dict(
use=['dist', 'neighb', 'distri','tempp', 'func'], # select no more than five graphs from ['dist', 'neighb', 'distri', 'tempp', 'func'].
fix_weight=False, # if True, the weight of each graph is fixed.
tempp_diag_zero=True, # if Ture, the values of temporal pattern similarity weight matrix turn to 0.
matrix_weight=True, # if True, turn the weight matrices trainable.
distri_type='exp', # select one from ['kl', 'ws', 'exp']: 'kl' is for Kullback-Leibler divergence, 'ws' is for Wasserstein, and 'exp' is for expotential fitting
func_type='ours', # select one from ['ours', 'others'], 'others' is for the functionality graph proposed by "Spatiotemporal Multi-Graph Convolution Network for Ride-hailing Demand Forecasting"
attention=True, # if True, the SG-ATT is used.
),
model=dict(
# TODO: check batch_size
use='MSTGCN'
),
data=dict(
in_dim=1,
out_dim=1,
hist_len=24,
pred_len=24,
type='pm25',
),
STMGCN=dict(
use_fusion_graph=True,
),
train=dict(
seed=0,
epoch=40,
batch_size=32,
lr=1e-4,
weight_decay=1e-4,
M=24,
d=6,
bn_decay=0.1,
)
)
wandb_proj = 'parking'
wandb.init(config=hyperparameter_defaults, project=wandb_proj)
wandb_logger = WandbLogger()
config = wandb.config
pl.utilities.seed.seed_everything(config['train']['seed'])
gpu_id = config['server']['gpu_id']
device = 'cuda:%d' % gpu_id
if config['data']['type'] == 'pm25':
root_dir = 'data'
pm25_data_dir = os.path.join(root_dir, 'temporal_data/pm25')
pm25_graph_dir = os.path.join(root_dir, 'graph/pm25')
else:
raise NotImplementedError
if config['data']['type'] == 'pm25':
graph = AirGraph(pm25_graph_dir, config['graph'], gpu_id)
train_set = Air(pm25_data_dir, 'train')
val_set = Air(pm25_data_dir, 'val')
test_set = Air(pm25_data_dir, 'test')
else:
raise NotImplementedError
scaler = train_set.scaler
class LightningData(LightningDataModule):
def __init__(self, train_set, val_set, test_set):
super().__init__()
self.batch_size = config['train']['batch_size']
self.train_set = train_set
self.val_set = val_set
self.test_set = test_set
def train_dataloader(self):
return DataLoader(self.train_set, batch_size=self.batch_size, shuffle=True, num_workers=0,
pin_memory=True, drop_last=True)
def val_dataloader(self):
return DataLoader(self.val_set, batch_size=self.batch_size, shuffle=False, num_workers=0,
pin_memory=True, drop_last=True)
def test_dataloader(self):
return DataLoader(self.test_set, batch_size=self.batch_size, shuffle=False, num_workers=0,
pin_memory=True, drop_last=True)
class LightningModel(LightningModule):
def __init__(self, scaler, fusiongraph):
super().__init__()
self.scaler = scaler
self.fusiongraph = fusiongraph
self.metric_lightning = LightningMetric()
self.loss = nn.L1Loss(reduction='mean')
if config['model']['use'] == 'ASTGCN':
self.model = ASTGCN_submodule(gpu_id, fusiongraph, config['data']['in_dim'], config['data']['hist_len'], config['data']['pred_len'])
for p in self.model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
else:
nn.init.uniform_(p)
elif config['model']['use'] == 'MSTGCN':
self.model = MSTGCN_submodule(gpu_id, fusiongraph, config['data']['in_dim'], config['data']['hist_len'], config['data']['pred_len'])
for p in self.model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
else:
nn.init.uniform_(p)
else:
raise NotImplementedError
self.log_dict(config)
def forward(self, x):
return self.model(x)
def _run_model(self, batch):
x, y = batch
y_hat = self(x)
y_hat = self.scaler.inverse_transform(y_hat)
loss = masked_mae(y_hat, y, 0.0)
return y_hat, y, loss
def training_step(self, batch, batch_idx):
y_hat, y, loss = self._run_model(batch)
self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
return loss
def validation_step(self, batch, batch_idx):
y_hat, y, loss = self._run_model(batch)
self.log('val_loss', loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
def test_step(self, batch, batch_idx):
y_hat, y, loss = self._run_model(batch)
self.metric_lightning(y_hat.cpu(), y.cpu())
self.log('test_loss', loss, on_step=False, on_epoch=True, prog_bar=True, logger=True)
def test_epoch_end(self, outputs):
test_metric_dict = self.metric_lightning.compute()
self.log_dict(test_metric_dict)
def configure_optimizers(self):
return Adam(self.parameters(), lr=config['train']['lr'], weight_decay=config['train']['weight_decay'])
def main():
fusiongraph = FusionGraphModel(graph, gpu_id, config['graph'], config['data'], config['train']['M'], config['train']['d'], config['train']['bn_decay'])
lightning_data = LightningData(train_set, val_set, test_set)
lightning_model = LightningModel(scaler, fusiongraph)
trainer = Trainer(
logger=wandb_logger,
gpus=[gpu_id],
max_epochs=config['train']['epoch'],
# TODO
# precision=16,
)
trainer.fit(lightning_model, lightning_data)
trainer.test(lightning_model, datamodule=lightning_data)
print('Graph USE', config['graph']['use'])
print('Data', config['data'])
if __name__ == '__main__':
main()